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Unit I                                                                         

Sequences - Bounded sequences - Monotonic Sequences – Convergent Sequences – Divergent 

and Oscillating Sequences – The Algebra of limits.  

 Chapter 1: Sections 1.1 - 1.7 

 

1.Sequences: 

1.1 Introduction: 

A great deal of analysis is concerned with sequences and series. Consider the following 

collection of real numbers given by 1,
1

2
,
1

3
, … . . ,

1

𝑛
, ……. In this collection the first element is 1 

, the second element is 
1

2
, the third element is 

1

3
 and so on. This is an example of a sequence of 

real numbers. We may think of a sequence as any arrangement of elements where we can say 

which element is first, which is second, which is third and so on. In other words the elements 

of a sequence are labelled with the elements of 𝐍 preserving their order. In general such a 

labelling can be done by means of a function 𝑓 whose domain is 𝐍. If the range of 𝑓 is a subset 

of an arbitray set 𝑋, we get a sequence of elements of 𝑋. Throughout this chapter we deal with  

sequences of real numbers. 

 

1.2. Sequences: 

Definition: 

Let 𝑓: 𝐍 → 𝐑 be a function and let 𝑓(𝑛) = 𝑎𝑛. Then 𝑎1, 𝑎2, 𝑎3, …… . , 𝑎𝑛 , ….. is called the 

sequence in 𝐑 determined by the function 𝑓 and is denoted by (𝑎𝑛). 𝑎𝑛 is called the 𝑛th  term 

of the sequence. 

The range of the function 𝑓, which is a subset of 𝐑, is called the range of the sequence. 

Examples: 

1. The function 𝑓: 𝐍 → 𝐑 given by 𝑓(𝑛) = 𝒏 determines the sequence 1,2,3,   , 𝑛,… 

2. The function 𝑓: 𝐍 → 𝐑 given by 𝑓(𝑛) = 𝑛2 determines the sequence 

1,4,9… . . . , 𝑛2, ….. 
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3. The function 𝑓: 𝐍 → 𝐑 given by 𝑓(𝑛) = (−1)𝑛 determines the sequence 

−1,1, −1,1,……. . Thus the terms of a sequence need not be distinct. The range of this 

sequence is {1,−1}. Thus we see that the range of a sequence may be finite or 

infinite. 

4. The sequence ((−1)𝑛+1) is given by 1, −1,1,−1…. The range of this sequence is also 

{1, −1}. However we note that the sequence ((−1)𝑛) and ((−1)𝑛+1) are different. 

The first sequence starts with -1 and the second sequence starts with 1. 

5. The constant function 𝑓: 𝐍 → 𝐑 given by 𝑓(𝑛) = 1 determines the sequence 1,1,1,   

Such a sequence is called a constant sequence. 

6. The function 𝑓: 𝐍 → 𝐑 given by𝑓(𝑛) = {

1

2
𝑛 if 𝑛 is even 

1

2
(1 − 𝑛) if 𝑛 is odd 

determines the 

sequence 0,1,−1,2, −2,…… , 𝑛, −𝑛……. The range of this sequence is 𝐙. 

7. The function 𝑓: 𝑁 → R given by 𝑓(𝑛) =
𝑛

𝑛+1
 determines the sequence 

1

2
,
2

3
,
3

4
, ……… ,

𝑛

𝑛+1
, …….. 

8. The function 𝑓: 𝐍 → 𝐑 given by 𝑓(𝑛) =
1

𝑛
 determines the sequence 

1,
1

2
,
1

3
, …… . ,

1

𝑛
, …….  

9. The function 𝑓: 𝐍 → 𝐑 given by 𝑓(𝑛) = 2𝑛 + 3 determines the sequence 

5,7,9,11,…….. 

10. Let 𝑥 ∈ 𝐑. The function 𝑓:𝐍 → 𝐑 given by 𝑓(𝑛) = 𝑥𝑛−1 determines the geometric 

sequence 1, 𝑥, 𝑥2, … . . . , 𝑥𝑛 , … ... 

11. The sequence (−𝑛) is given by −1,−2,−3, …… ,−𝑛, …. The range of this sequence is 

the set of all negative integers. 

12. A sequence can also be described by specifying the first few terms and stating 𝑎 rule 

for determining 𝑎𝑛 in terms of the previous terms of the sequence. For example, let 

𝑎1 = 1, 𝑎2 = 1 and 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2.  

Then 𝑎3 = 𝑎2 + 𝑎1 = 2; 𝑎4 = 𝑎3 + 𝑎2 = 3 and so on. we thus obtain the sequence 

1,1,2,3,5,8,13,….. . This sequence is called Fibonacci's sequence. 

13. Let 𝑎1 = √2 and 𝑎𝑛+1 = √(2 + 𝑎𝑛). This defines the sequence √2,√(2 + √2),……. 
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Exercises 1: 

1. Write the first five terms of each of the following sequences. 

(a) (
(−1)𝑛

𝑛
)   (b) (

2

3
(1 −

1

10𝑛
))  (c) (

cos𝑛𝑥

𝑛2+𝑥2
) (d) (

(−1)𝑛+1

𝑛!
) 

(e) (
1−(−1)𝑛

𝑛3
)  (f) (

2𝑛2+1

2𝑛2−1
)  (g) (𝑛!) (h) 𝑓(𝑛) = {

𝑛  if 𝑛
𝑛 is odd 

1/𝑛  if 𝑛
 is even. 

(i) 𝑎1 = 1 and 𝑎𝑛+1 = √(2 + 𝑎𝑛) 

2. Determine the range of the following sequences. 

(a) (𝑛)     (b) (2𝑛)    (c) (2𝑛 − 1)  (d) (1 + (−1)𝑛) 

(e) The constant sequence 𝑎, 𝑎, 𝑎, 

(f) 𝑓(𝑛) = {
1 if 𝑛 is odd 

1/𝑛 if 𝑛 is even 
 

(g) 𝑓(𝑛) = [
𝑛

4
] whert : denotes the integral part of 𝑥. 

1.3. Bounded Sequences: 

Definition: 

 A sequence (𝑎𝑛) is said to be bounded above if there exist a real number 𝑘 such that 

 𝑎𝑛 ≤ 𝑘 for all 𝑛 ∈  N. Then 𝑘 is called an upper bound of the sequence (𝑎𝑛). 

A sequence (𝑎𝑛) is said to be bounded below if there exists a real number 𝑘 such that 𝑎𝑛 ≥ 𝑘 

for all 𝑛. Then 𝑘 is called a lower bound of the sequence ( 𝑎𝑛 ). 

A sequence (𝑎𝑛) is said to be a bounded sequence if it is both bounded above and below. 

Note: 

A sequence ( 𝑎𝑛 ) is bounded iff there exists a real number 𝑘 ≥ 0. that |𝑎𝑛| ≤ 𝑘 for all 𝑛 

Examples: 

1. Consider the sequence 1,
1

2
,
1

3
, … . . . . ,

1

𝑛
, ….. Here 1 is the 𝑙. 𝑢. 𝑏 and 0 is the 𝑔. 𝑙. 𝑏. It is 

a bounded sequence. 
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2. The sequence 1,2,3,…… , 𝑛, … ... is bounded below but not bounded above. 1 is the 

𝑔. 𝑙. 𝑏 of the sequence. 

3. The sequence −1,−2,−3,… . . , −𝑛….. is bounded above but not bounded below. -1 is 

the 𝑙. 𝑢. 𝑏 of the sequence. 

4. 1,−1,1,−1,……. . is a bounded sequence. 1 is the 𝑙. u.b. and -1 is the 𝑔. 𝑙. 𝑏 of the 

sequence. 

5. Any constant sequence is a bounded sequence. Here 𝑙. 𝑢. 𝑏 = 𝑔. 𝑙. 𝑏 = the constant 

term of the sequence. 

Exercises: 

1. Give examples of sequences (𝑎𝑛) such that 

(a) (𝑎𝑛) is bounded above but not bounded below. 

(b) (𝑎𝑛) is bounded below but not bounded above. 

(c) (𝑎𝑛) is a bounded sequence. 

(d) (𝑎𝑛) is neither bounded above nor bounded below. 

2. Determine the 𝑙. 𝑢. 𝑏 and 𝑔. 𝑙. 𝑏 of the following sequences if they exist. 

(a) 2,−2,1,−1,1,−1, 

(b) 1,
1

√2
,
1

√3
,
1

√4
, …… ,

1

√𝑛
, ….. 

(c) 
1

2
,
2

3
,
3

4
, …… ,

𝑛

𝑛+1
, ….. 

(d) 1,−1,2, −2,3,−3,…… , 𝑛,−𝑛, …… 

(e) 1,
1

2
, 3,

1

4
, 5,

1

6
, … . , (2𝑛 − 1),

1

2𝑛
, ….. 

(f) 1,
1

2
, 1,

1

3
, 1,

1

4
, …… 

(g) (1 + 𝑛 + 𝑛2) 

(b) (−𝑛2). 
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1.4. Monotonic Sequences: 

Definition: 

A sequence (𝑎𝑛) is said to be monotonic increasing if 𝑎𝑛 ≤ 𝑎𝑛+1 for all 𝑛. ( 𝑎𝑛 ) is said to be 

monotonic decreasing if 𝑎𝑛 ≥ 𝑎𝑛+1 ' for all 𝑛. (𝑎𝑛) is said to be strictly monotonic increasing 

if 𝑎n < 𝑎n+1 for all 𝑛 and strictly monotonic decreasing if  𝑎𝑛 > 𝑎𝑛+1 for all 𝑛. ( 𝑎𝑛 ) is said 

to be it is either monotonic increasing or monotonic decreasing. 

Examples: 

1. 1,2,2,3,3,3,4,4,4,4,… is a monotonic increasing sequence. 

2. 1,2,3,4,…… , 𝑛,   is a strictly monotonic increasing sequence. 

3. 1,
1

2
,
1

3
,
1

4
, … . .

1

𝑛
, ….. is a strictly monotonic decreasing sequence. 

4. The sequence (𝑎𝑛) given by 1,−1,1,−1,1,…. is neither monotonic increasing nor 

decreasing. Hence (𝑎𝑛) is not a monotonic sequence. 

5. (
2𝑛−7

3𝑛+2
) is a monotonic increasing sequence. 

           Proof: 𝑎𝑛 − 𝑎𝑛+1 =
2𝑛−7

3𝑛+2
−

2(𝑛+1)−7

3(𝑛+1)+2
=

−25

(3𝑛+2)(3𝑛+5)
< 0. ∴ 𝑎𝑛 < 𝑎𝑛+1. 

           Hence the sequence is monotonic increasing. 

      6. Consider the sequence (𝑎𝑛) where 

  (𝑎𝑛) = 1 +
1

1!
+

1

2!
+⋯+

1

𝑛!
. Clearly (𝑎𝑛) is a monotonic increasing sequence. 

Note: 

A monotonic increasing sequence (𝑎𝑛) is bounded below and 𝑎1 is the g.l. 𝑏 of the sequence. 

A monotonic decreasing sequence (𝑎𝑛) is bounded ab ove and 𝑎1 is the 𝑙. 𝑢. 𝑏 of the 

sequence. 

Problem 1. 

Show that if (𝑎𝑛) is a monotonic sequence then (
𝑎1+𝑎2+⋯+𝑎𝑛

𝑛
) is also a monotonic sequence. 

Solution: 
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Let (𝑎𝑛) be a monotonic increasing sequence.   

 Let (𝑎𝑛) be a 

 
∴ 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ ⋯ . . ≤ 𝑎𝑛 ≤ ⋯      …………… (1) 

𝑏𝑛 =
𝑎1+𝑎2+⋯+𝑎𝑛

𝑛
  

 

𝑏𝑛+1 − 𝑏𝑛 =
𝑎1 +⋯ . . +𝑎𝑛+1

𝑛 + 1
−
𝑎1 +⋯ . . +𝑎𝑛

𝑛

 =
𝑛𝑎𝑛+1 − (𝑎1 +⋯…+ 𝑎𝑛)

𝑛(𝑛 + 1)

 ≥
𝑛𝑎𝑛+1 − (𝑎𝑛 + 𝑎𝑛 +⋯ . . +𝑎𝑛)

𝑛(𝑛 + 1)
 ( by (1))

 =
𝑛(𝑎𝑛+1 − 𝑎𝑛)

𝑛(𝑛 + 1)

 ≥ 0.  (by (1)) 

∴ 𝑏𝑛+1 ≥ 𝑏𝑛 .

 ∴ (𝑏𝑛) is monotoic increasing. 

 

The proof is similar if (𝑎𝑛) is monotonic decreasing. 

Exercises. 

1. Give an example of a sequence (𝑎𝑛) such that (𝑎𝑛) is 

(a) monotonic increasing and bounded above. 

(b) monotonic increasing and not bounded above. 

(c) monotonic decreasing and bounded below. 

(d) monotonic decreasing and not bounded below. 

2. Determine which of the following sequences are monotonic. 

(a) (log 𝑛) 

(b) ((−1)𝑛+1𝑛) 

(c) (2 +
1

𝑛
) 

(d) (
1

2𝑛
) 

(e) (
1

𝑛!
) 
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(f) (
(−1)𝑛

𝑛
) 

(g) . 6, .66, .666   (h) 2,1.9,1.8,   

3. If (𝑎𝑛) and (𝑏𝑛) are two monotonic increasing (decreasing) sequences show that 

(𝑎𝑛 + 𝑏𝑛) is also monotonic increasing ( decreasing). 

4. . If (𝑎𝑛) is monotonic increasing show that (𝜆𝑎𝑛) is increasing if 𝜆 is positive and 

(𝜆𝑎𝑛) is decreasing if 𝜆 is negative. 

1.5. Convergent Sequences: 

Consider the sequence 1,
1

2
,
1

3
, …… . ,

1

𝑛
, …….. We observe that as 𝑛 increases 

1

𝑛
 approaches 

zero. In fact by raking the value of 𝑛 sufficiently large, we can bring 
1

𝑛
 as close to 0 as we 

want. This is roughly what we mean when we say that the sequence (1/𝑛) converges to 0 or 

0 is the limit of this sequence. This idea is formulated mathematically in the following 

definition.  

Definition: 

A sequence ( 𝑎𝑛 ) is said to converge to a number 𝑙 if given 𝜀 > 0 there exists a positive 

integer 𝑚 such that |𝑎𝑛 − 𝑙| < 𝜀 for all 𝑛 ≥ 𝑚. We say that 𝑙 is the limit of the sequence and 

we write lim
𝑛→−∞

𝑎𝑛   = 𝑙 or (𝑎𝑛) → 𝑙. 

Note. 1.  

(𝑎𝑛) → 𝑙 iff given 𝜀 > 0 there exists a natural number 𝑚 such that 𝑎𝑛 ∈ (𝑙 − 𝜀, 𝑙 + 𝜀) for all 

𝑛 ≥ 𝑚 (i.e.), All but a finite number of terms of the sequence lie within the interval (𝑙 −

𝜀, 𝑙 + 𝜀). 

Note. 2  

The above definition does not give any method of finding the limit of a sequence. In many 

cases, by observing the sequence carefully, we can guess whether the limit exists or not and 

also the value of the limit. 

Theorem 1:  

A sequence cannot converge to two different limits. 

Proof: 
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Let ( 𝑎𝑛 ) be a convergent sequence. 

If possible let 𝑙1 and 𝑙2 be two distinct limits of (𝑎𝑛). 

Let 𝜀 > 0 be given. Since (𝑎𝑛) → 𝑙1, there exists a natural number 𝑛1 such that 

|𝑎𝑛 − 𝑙1| <
1

2
𝜀 for all 𝑛 ≥ 𝑛1 

Since (𝑎𝑛) → 𝑙2, there exists a natural number 𝑛2 such lame Pri |𝑎𝑛 − 𝑙2| <
1

2
𝜀 for all 𝑛 ≥

𝑛2. 

Let 𝑚 = max{𝑛1, 𝑛2}. 

Then |𝑙1 − 𝑙2| = |𝑙1 − 𝑎𝑚 + 𝑎𝑚 − 𝑙2| 

 ≤ |𝑎𝑚 − 𝑙1| + |𝑎𝑚 − 𝑙2|

 <
1

2
𝜀 +

1

2
𝜀( by 1 and 2)

 = 𝜀.

 

∴ |𝑙1 − 𝑙2| < 𝜀 and this is true for every 𝜀 > 0. 

Clearly this is possible if and only if 𝑙1 − 𝑙2 = 0. Hence 𝑙1 = 𝑙2. 

Example 1: 

lim
𝑛→−∞

 
1

𝑛
= 0 (or) (

1

𝑛
) → 0. 

Proof: 

Let 𝜀 > 0 be given. 

Then |
1

𝑛
− 0| =

1

𝑛
< 𝜀 if 𝑛 >

1

𝜀
. 

Hence if we choose 𝒎 to be any natural number such that 𝒎 >
1

𝜀
 then |

1

𝑛
− 0| < 𝜀 for all 𝑛 ≥

𝑚. 

∴ lim
𝑛→∞

 
1

𝑛
= 0 
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Note: 

If 𝜀 = 1/100, then 𝑚 can be chosen to be any natural number grater than 100. In this 

example the choice' of 𝑚 depends on the given 𝜀 and [1/𝜀] + 1 is the smallest value of 𝑚 

that satisfies the requirements of the definition. 

Example 2: 

The constant sequence 1,1,1,… . . . ... converges to 1. 

Proof:  

Let 𝜀 > 0 be given. 

Let the given sequence be denoted by (𝑎𝑛). 

Then 𝑎𝑛 = 1 for all 𝑛. 

∴ |𝑎𝑛 − 1| = |1 − 1| = 0 < 𝜀 for all 𝑛 ∈ 𝐍 

∴ |𝑎𝑛 − 1| < 𝜀 for all 𝑛 ≥ 𝑚 where 𝑚 can be chosen to be any natural number. 

∴ lim
𝑛→∞

 𝑎𝑛 = 1 

Note: 

In this example, the choice of 𝑚 does not depend on the given 𝜀. 

Example 3: 

 lim
𝑛→∞

 
𝑛+1

𝑛
= 1. 

Proof: 

Let 𝜀 > 0 be given. 

Now, |
𝑛+1

𝑛
− 1| = |1 +

1

𝑛
− 1| = |

1

𝑛
|. 

∴ If we choose 𝑚 to be any natural number greater than 
1

𝜀
 we have, 
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|
𝑛 + 1

𝑛
− 1| < 𝜀 for all 𝑛 ≥ 𝑚

 ∴ lim
𝑛→∞

 
𝑛 + 1

𝑛
= 1

 

Example 4: 

lim
𝑛→−∞

 
1

2𝑛
= 0. 

Proof: 

Let 𝜀 > 0 be given. 

Then |
1

2𝑛
− 0| =

1

2𝑛
<

1

𝑛
 ( since 2𝑛 > 𝑛 for all 𝑛 ∈  N). 

∴ |
1

2𝑛
− 0| < 𝜀 for all 𝑛 ≥ 𝑚 where 𝑚 is any natural number  

greater than 1/𝜀 

∴ lim
𝑛→−∞

 
1

2𝑛
= 0 

Example 5: 

The sequence ((−1)𝑛) is not convergent. 

Proof: 

Suppose the sequence ((−1)𝑛) converges to 𝑙. 

Then, given 𝜀 > 0, there exists a natural number 𝑚 such that |(−1)𝑛 − 𝑙| < 𝜀 for all 𝑛 ≥ 𝑚. 

𝑙 ∣< 𝜀 tor all 𝑛𝑧𝑚.
 ∴ |(−1)𝑚 − (−1)𝑚+1| = |(−1)𝑚 − 𝑙 + 𝑙 − (−1)𝑚+1|

 ≤ |(−1)𝑚 − 𝑙| + |(−1)𝑚+1 − 𝑙|

 < 𝜀 + 𝜀 = 2𝜀

 

But |(−1)𝑚 − (−1)𝑚+1| = 2. 

∴ 2 < 2𝜀 i.e., 1 < 𝜀 which is a contradiction since 𝜀 > 𝑂;  arbitrary. 

∴ The sequence ((−1)𝑛) is not convergent. 
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Theorem 2:  

Any convergent sequence is a bounded sequence. 

Proof:  

Let ( 𝑎𝑛 ) be a convergent sequence. 

Let lim
𝑛→∞

 𝑎𝑛 = 𝑙. 

Let 𝜀 > 0 be given. Then there exists 𝑚 ∈ 𝑁 such thatit |𝑎𝑛 − 𝑙| < 𝜀 for all 𝑛 ≥ 𝑚. 

∴ |𝑎𝑛| < |𝑙| + 𝜀 for all 𝑛 ≥ 𝑚 

Now, let 𝑘 = max{|𝑎1|, |𝑎2|, …… , |𝑎𝑚−1|, |𝑙| + 𝜀) 

Then |𝑎𝑛| ≤ 𝑘 for all 𝑛. 

∴ (𝑎𝑛) is a bounded sequence. 

Note: 

The converse of the above theorem is not true. For example, the sequence ((−1)𝑛) is a 

bounded sequence. However, it is not a convergent sequence. 

Exercises: 

1. Prove that lim𝑛→−∞  
1

𝑛2
= 0. 

2. Prove that lim𝑛→−∞   (1 +
1

𝑛!
) = 1. 

3. Prove that lim𝑛→−∞  
2𝑛+1

2𝑛
= 1. 

4. Prove that the following sequences are not convergent. 

(a) ((−1)𝑛𝑛). 

(b) (𝑛2). 

1.6. Divergent and Oscillating Sequences: 

We now proceed to classify sequences which are not convergent as follows. 

1. Sequences diverging to ∞ 

2. Sequences diverging to −∞ 
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3. Finitely oscillating sequences. 

4. Infinitely oscillating sequences. 

Definition: 

A sequence (𝑎𝑛) is said to diverge 𝑡𝑜 ∞ if given any real number 𝑘 > 0, there exists 𝑚 ∈  N 

such that 𝑎𝑛 > 𝑘 for all 𝑛 ≥ 𝑚. In symbols we write (𝑎𝑛) → ∞ or lim𝑛→∞  𝑎𝑛 = ∞. 

Note: 

 (𝑎𝑛) → ∞ iff given any real number 𝑘 > 0 there exists 𝑚 ∈  N  

such that 𝑎𝑛 ∈ (𝑘,∞) for all 𝑛 ≥ 𝑚. 

Example 1: 

(𝑛) → ∞. 

Proof.  

Let 𝑘 > 0 be any given real number. 

Choose 𝒎 to be any natural number such that 𝒎 > 𝒌. 

Then 𝑛 > 𝑘 for all 𝑛 ≥ 𝑚. 

∴ (𝑛) → ∞. 

Example 2: 

 (𝑛2) → ∞. 

Proof: 

Let 𝑘 > 0 be any given real number. 

Choose 𝒎 to be any natural number such that 𝒎 > √𝑘. 

Then 𝑛2 > 𝑘 for all 𝑛 ≥ 𝑚. 

∴ (𝑛2) → ∞ 

Example 3: 

 (2𝑛) → ∞. 
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Proof: 

 Let 𝑘 > 0 be any given real number. 

Then 2𝑛 > 𝑘 ⇔ 𝑛log 2 > log 𝑘. 

⇔ 𝑛 > (log 𝑘)/log 2 

Hence if we choose 𝑚 to be any natural number such that 𝑚 > (log 𝑘)/log 2, then 2𝑛 > 𝑘 

for all 𝑛 ≥ 𝑚. 

∴ (2𝑛) → ∞. 

Definition:  

A sequence (𝑎𝑛) is said to diverge to −∞ if given any ral wisk 𝑘 < 0 there exists 𝑚 ∈  N 

such that 𝑎𝑛 < 𝑘 for all 𝑛 ≥ 𝑚. In symbols we write lim
𝑛→∞

 𝑎𝑛 = −∞ or (𝑎𝑛) → −∞. 

Note: 

 (𝑎𝑛) → −∞ iff given any real number 𝑘 < 0, there exists 𝑚 ∈ 𝑁 such 

that 𝑎𝑛 ∈ (−∞, 𝑘) for all 𝑛 ≥ 𝑚. 

A sequence (𝑎𝑛) is said to be divergent if exists 

(𝑎𝑛) → ∞ or (𝑎𝑛) → −∞ 

Theorem 𝟑: 

(𝑎𝑛) → ∞ iff (−𝑎𝑛) → −∞. 

proof: 

Let (𝑎𝑛) → ∞. 

Let 𝑘 < 0 be any given real number. Since (𝑎𝑛) → ∞ there exists 

𝑚 ∈  N such that 𝑎𝑛 > −𝑘 for all 𝑛 ≥ 𝑚. 

 ∴ −𝑎𝑛 < 𝑘 for all 𝑛 ≥ 𝑚

 ∴ (−𝑎𝑛) → −∞
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Similarly we can prove that if (−𝑎𝑛) → −∞ then (𝑎𝑛) → ∞. 

 

Examples.  

The sequences (−𝑛), (−𝑛2) and (−2𝑛) diverge to −∞. 

Theorem 4: 

If (𝑎𝑛) → ∞ and 𝑎𝑛 ≠ 0 for all 𝑛 ∈  N then (1/𝑎𝑛) → 0. 

Proof: 

 Let 𝜀 > 0 be given. Since (𝑎𝑛) → ∞, there exists 𝑚 ∈ 𝑁 such that 𝑎𝑛 > 1/𝜀 for all 𝑛 ≥ 𝑚. 

 ∴
1

𝑎𝑛
< 𝜀 for all 𝑛 ≥ 𝑚

 ∴ |
1

𝑎𝑛
| < 𝜀 for all 𝑛 ≥ 𝑚

 ∴ (1/𝑎𝑛) → 0

 

Note. The converse of the above theorem is not true. For example, consider the sequence 

(𝑎𝑛) where 𝑎𝑛 =
(−1)𝑛

𝑛
. Clearly (𝑎𝑛) → 0. 

Now(
1

𝑎𝑛
) = (

𝑛

(−1)𝑛
) = −1,2,−3,4,….. which neither converges nor diverges to ∞ or −∞. 

Thus if a sequence (𝑎𝑛) → 0, then the sequence ( 1/𝑎𝑛 ) need not converge or diverge. 

Theorem 5:  

If (𝑎𝑛) → 0 and 𝑎𝑛 > 0 for, all 𝑛 ∈  N, then (1/𝑎𝑛) → ∞. 

Proof: 

 Let 𝑘 > 0 be any given real number. Since (𝑎𝑛) → 0 there exists 𝑚 ∈ 𝑁 such that |𝑎𝑛| <

1/𝑘 for all 𝑛 ≥ 𝑚.. 

 ∴ 𝑎𝑛 < 1/𝑘 for all 𝑛 ≥ 𝑚 ( since 𝑎𝑛 > 0)

 ∴ 1/𝑎𝑛 > 𝑘 for all 𝑛 ≥ 𝑚.

 ∴ (1/𝑎𝑛) → ∞.

 

Theorem 6:  

Any sequence ( 𝑎𝑛 ) diverging to ∞ is bounded below but not bounded above. 

Proof: 
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Let (𝑎𝑛) → ∞. Then for any given real number 𝑘 > 0 there etiof 𝑚 ∈ 𝑁 such that 𝑎𝑛 > 𝑘 for 

all 𝑛 ≥ 𝑚. 

∴ 𝑘 is not an upper bound of the sequence (𝑎𝑛). 

∴ (𝑎𝑛) is not bounded above. 

Now let 𝑙 = min{𝑎1, 𝑎2, … . , 𝑎𝑚 , 𝑘}. 

From (1) we see that 𝑎𝑛 ≥ 𝑙 for all 𝑛. 

∴ (𝑎𝑛) is bounded below. 

Theorem 7:  

Any sequence ( 𝑎𝑛 ) diverging to −∞ is bounded above but not below. 

Proof is similar to that of Theorem 6. 

Note: 

1. The converse of the above theorem is not true. For example, 位 function, 𝑓:𝐍 → 𝐑 defined 

by 

𝑓(𝑛) = {
0  if 𝑛 is odd 
1

2
𝑛  if 𝑛 is even 

 

determines the sequence 0,1,0,2,0,3,….. . which is bounded below ad not bounded above. 

Also for any real number 𝑘 > 0, we cannot find a natual number 𝑚 such that 𝑎𝑛 > 𝑘 for all 

𝑛 ≥ 𝑚. 

Hence this sequence does not diverge to ∞. 

Similarly 𝑓:𝐍 → 𝐑 given by 𝑓(𝑛) = {
0  if 𝑛 is odd 

−
1

2
𝑛  if 𝑛 is even 

 determines the sequence 

0,−1,0,−2,0,…. which is bounded above asd not bounded below. However this sequence 

does not diverge to −∞. 

2. By theorem 2 any convergent sequence is bounded. Hence by theorem 6 we see that any 

convergent sequence cannot diverge to ∞. Similarly by theorem 7 it cannot diverge to −∞. 

Also any sequence diverging to ∞ cannot converge or diverge to −∞ and any sequence 

diverging to −∞ cannot converge or diverge to ∞. Thus the three behaviours of a sequence 

namely convergence, divergence to ∞ and divergence to −∞ are mutually exclusive. 
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However these three types of behaviour of sequences are not exhaustive since there exist 

sequences which neither converge nor diverge to ∞ nor diverge to −∞. 

Definition: 

A sequence ( 𝑎𝑛 ) which is neither convergent nor divergent to ∞ of −∞ is said to be an 

oscillating sequence. An oscillating sequence which is bounded is said to be finitely 

oscillating. An oscillating sequence which is unbounded is said to be infinitely oscillating. 

Examples. 

1. Consider the sequence ((−1)𝑛). Since this sequence is bounded it cannot diverge to 

∞ or −∞ (by theorems 6 and 7 ). Also this sequence is not convergent (by example 5 

of 1.5). Hence ((−1)𝜅) is a finitely oscillating sequence. 

2. The function 𝑓: 𝐍 → 𝐑 defined by 

           𝑓(𝑛) = {

1

2
𝑛 if 𝑛 is even 

1

2
(1 − 𝑛) if 𝑛 is odd 

 

determines the sequence 0,1,−1,2,−2,3, ….. . The range of this sequence is 𝐙. Hence the 

sequence is neither bounded below nor bounded above. Hence it cannot converge or diverge 

to ±∞. This sequence is infinitely oscillating. 

Exercises. 

1. Discuss the behaviour of each of the following sequences. 

(a) (𝑛!) 

(b) 1,
1

2
, 2,

1

3
, 3,…… ,

1

𝑛
, 𝑛, … ... 

(c) ((−1)𝑛5) 

(d) ((−1)𝑛 + 5) 

(e) (−𝑛2) 

(f) (√𝑛) 

(g) (cos 𝑛𝜋) 

(b) (sin 𝑛𝜋/2). 

2. Show that if (𝑎𝑛) diverges to −∞ and 𝑎𝑛 ≠ 0 for all 𝑛, then (1/2 converges to 0 . 
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3. If (𝑎𝑛) → 0 and 𝑎𝑛 < 0 for all 𝑛 prove that (1/𝑎𝑛) → −∞. 

1.7. The Algebra of Limits: 

In this section we prove a few simple theorems for sequences vied are very useful in 

calculating limits of sequences. 

Theorem 8:  

If (𝑎𝑛) → 𝑎 and (𝑏𝑛) → 𝑏 then (𝑎𝑛 + 𝑏𝑛) → 𝑎 + 𝑏. 

Proof: 

Let 𝜀 > 0 be given. 

 Now |𝑎𝑛 + 𝑏𝑛 − 𝑎 − 𝑏| = |𝑎𝑛 − 𝑎 + 𝑏𝑛 − 𝑏|

 ≤ |𝑎𝑛 − 𝑎| + |𝑏𝑛 − 𝑏|  ………… . (1)
 

Since (𝑎𝑛) → 𝑎, there exists a natural number 𝑛1 such that 

|𝑎𝑛 − 𝑎| <
1

2
𝜀 for all 𝑛 ≥ 𝑛1     ………….. (2) 

Since (𝑏𝑛) → 𝑏, there exists a natural number 𝑛2 such that 

|𝑏𝑛 − 𝑏| <
1

2
𝜀 for all 𝑛 ≥ 𝑛2   ………….. (3) 

Let 𝑚 = max{𝑛1, 𝑛2}. 

Then |𝑎𝑛 + 𝑏𝑛 − 𝑎 − 𝑏| <
1

2
𝜀 +

1

2
𝜀 = 𝜀 for all 𝑛 ≥ 𝑚. 

(by 1,2 and 3) 

∴ (𝑎𝑛 + 𝑏𝑛) → 𝑎 + 𝑏 

Note: 

Similarly we can prove that (𝑎𝑛 − 𝑏𝑛) → 𝑎 − 𝑏. 

Theorem 9:  

If (𝑎𝑛) → 𝑎 and 𝑘 ∈ 𝐑 then (𝑘𝑎∗) → 𝑘𝑎. 

Proof: 
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If 𝑘 = 0, (𝑘𝑎𝑛) is the constant sequence 0,0,0,   and hence the result is trivial. 

Now, let 𝑘 = 0. 

Then |𝑘𝑎𝑛 − 𝑘𝑎| = |𝑘||𝑎𝑛 − 𝑎|    ………(1) 

Let 𝜀 > 0 be given. 

Since (𝑎𝑛) → 𝑎, there exists 𝑚 ∈  N  

such that |𝑎𝑛 − 𝑎| <
𝜀

|𝑘|
 for all 𝑛 ≥ 𝑚. ………. (2) 

 ∴ |𝑘𝑎𝑛 − 𝑘𝑎| < 𝜀 for all 𝑛 ≥ 𝑚 by (1 and 2).

 ∴ (𝑘𝑎𝑛) → 𝑘𝑎.
 

Theorem 10: 

 If (𝑎𝑛) → 𝑎 and (𝑏𝑛) → 𝑏 then (𝑎𝑛𝑏𝑛) → 𝑎𝑏. 

Proof:  

Let 𝜀 > 0 be given. 

 Now, |𝑎𝑛𝑏𝑛 − 𝑎𝑏| = |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏 + 𝑎𝑛𝑏 − 𝑎𝑏|

 ≤ |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏| + |𝑎𝑛𝑏 − 𝑎𝑏|

 = |𝑎𝑛||𝑏𝑛 − 𝑏| + |𝑏||𝑎𝑛 − 𝑎| ……… . . (1)

 

Also, since (𝑎𝑛) → 𝑎, (𝑎𝑛) is a bounded sequence. (by theorem 2) 

∴ There exists a real number 𝑘 > 0 such that |𝑎𝑛| ≤ 𝑘 for all 𝑛.   ………(2) 

Using (1) and (2) we get 

|𝑎𝑛𝑏𝑛 − 𝑎𝑏| ≤ 𝑘|𝑏𝑛 − 𝑏| + |𝑏||𝑎𝑛 − 𝑎|   ………. (3) 

Now since (𝑎𝑛) → 𝑎 there exists a natural number 𝑛1 such that 

|𝑎𝑛 − 𝑎| <
𝜀

2|𝑏|
 for all 𝑛 ≥ 𝑛1    …………. (4). 

Since (𝑏𝑛) → 𝑏, there exists a natural number 𝑛2 such that 

|𝑏𝑛 − 𝑏| <
𝜀

2𝑘
 for all 𝑛 ≥ 𝑛2    ………….. (5) 

Let 𝑚 = max{𝑛1, 𝑛2}. Then 
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 Let 𝑚 = max {𝑛1, 𝑛2} 

|𝑎𝑛𝑏𝑛 − 𝑎𝑏| < 𝑘 (
𝜀

2𝑘
) + |𝑏| (

𝜀

2|𝑏|
) = 𝜀 for all 𝑛 ≥ 𝑚( by 3,4 and 5 ).  

Hence (𝑎𝑛𝑏𝑛) → 𝑎𝑏. 

Theorem 11:  

If (𝑎𝑛) → 𝑎 and 𝑎𝑛 ≠ 0 for all 𝑛 and 𝑎 = 0, the 𝑒𝑛 (
1

𝑎𝑛
) →

1

𝑎
. 

Proof: 

Let 𝜀 > 0 be given. 

We bave |
1

𝑎𝑛
−

1

𝑎
| = |

𝑎𝑛−𝑎

𝑎𝑛𝑎
| =

1

|𝑎𝑛||𝑎|
|𝑎𝑛 − 𝑎|   …………(1) 

Now, 𝑎 = 0. Hence |𝑎| > 0. 

Since (𝑎𝑛) → 𝑎 there exists 𝑛1 ∈  N such that |𝑎𝑛 − 𝑎| <
1

2
|𝑎| for all 𝑛 ≥ 𝑛1. 

Hence |𝑎𝑛| >
1

2
|𝑎| for all 𝑛 ≥ 𝑛1  ………….(2) 

Using (1) and (2) we get 

|
1

𝑎𝑛
−

1

𝑎
| <

2

|𝑎|2
|𝑎𝑛 − 𝑎| for all 𝑛 ≥ 𝑛1  ………… (3) 

Now since (𝑎𝑛) → 𝑎 there exists 𝑛2 ∈  N such that 

|𝑎𝑛 − 𝑎| <
1

2
𝜀|𝑎|2 for all 𝑛 ≥ 𝑛2  ………….. (4) 

Let 𝑚 = max{𝑛1, 𝑛2} 

 ∴ |
1

𝑎𝑛
−
1

𝑎
| <

2|𝑎|2𝜀

|𝑎|22
= 𝜀 for all 𝑛 ≥ 𝑚   (𝑏𝑦 3 𝑎𝑛𝑑 4)

 ∴ (
1

𝑎𝑛
) →

1

𝑎
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Corollary: 

Let (𝑎𝑛) → 𝑎 and (𝑏∗) → 𝑏 where 𝑏n ≠ 0 for all 𝑛 and 𝑏 = 0. 

Then (
𝑎𝑛

𝑏𝑛
) →

𝑎

𝑏
. 

Proof: 

 (
1

𝑏n
) →

1

𝑏
    (by theorem 11). 

∴ (
𝑎𝑛

𝑏𝑛
) →

𝑎

𝑏
      (by theorem 10). 

Note: 

Even if lim
𝑥→−

 𝑎𝑛 and lim
𝑛→−

 𝑏𝑛 do not exist, lim
𝑥→∞

 (𝑎𝑛 + 𝑏𝑛) and lim
𝑛→−

 
𝑎𝑛

𝑏𝑛
 may exist. For example let 

𝑎𝑛 = ((−1)𝑛) and 𝑏𝑛 = ((−1)
𝑛+1). Clearly lim

𝑛
 𝑎𝑛, and lim

𝑛→−
 𝑏𝑛 do not exist. Now (𝑎𝑛 + 𝑏𝑛) 

is the constant sequence 0,0,0,….. Each of (𝑎𝑛𝑏𝑛) and (𝑎𝑛/𝑏𝑛) is the constant sequence 

−1,−1,… ... Hence (𝑎𝑛 + 𝑏𝑛) → 0. (𝑎𝑛 , 𝑏𝑛) → −1 and (𝑎𝑛/𝑏𝑛) → −1. 

Theorem 12:  

If (𝑎𝑛) → 𝑎 then (|𝑎𝑛|) → |𝑎|. 

Proof: 

 Let 𝜀 > 0 be given. 

 Now, ‖𝑎𝑛| − |𝑎|| ≤ |𝑎𝑠 − 𝑎|   …………..(1) 

Since (𝑎𝑛) → 𝑎, there exists 𝑚 ∈  N such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑚. 

Hence from (1) we get ||𝑎𝑛| − |𝑎|| < 𝜀 for all 𝑛 ≥ 𝑚. 

Hence (|𝑎𝑛|) → |𝑎|. 

Theorem 13:  

If (𝑎∗) → 𝑎 and 𝑎𝑛 ≥ 0 for all 𝑛 then 𝑎 ≥ 0. 

Proof:  
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Suppose 𝑎 < 0. Then −𝑎 > 0. 

Cboose 𝜀 such that 0 < 𝜀 < −𝑎 so that 𝑎 + 𝜀 < 0. 

Now, since (𝑎𝑛) → 𝑎, there exists 𝑚 ∈ 𝑁 such that |𝑎0 − 𝑎| < 𝜀 forall 𝑛 ≥ 𝑚. 

∴ 𝑎 − 𝜀 < 𝑎𝑛 < 𝑎 + 𝜀 for all 𝑛 ⩾ 𝑚 

Now, since 𝑎 + 𝜀 < 0, we have 𝑎n < 0 for all 𝑛 ≥ 𝑚 which is a contadiction since 𝑎n ≥ 0. 

Hence 𝑎 ≥ 0. 

Note: 

In the above theorem if 𝑎n > 0 for all 𝑛, we cannot say that a > 0. 

For example consider the sequence (
1

𝑛
). Here 

1

𝑛
> 0 for all n and (

1

𝑛
) → 0. 

Theorem 14: 

If (𝑎𝑛) → 𝑎, (𝑏∗) → 𝑏 and 𝑎𝑛 ≤ 𝑏𝑛 for all n, then 𝑎 ≤ 𝑏. 

 Proof:  

Since 𝑎𝑛 ≤ 𝑏𝑛 , we have 𝑏𝑛 − 𝑎𝑛 ≥ 0 for all 𝑛. 

 Also (𝑏∗ − 𝑎∗) → 𝑏 − 𝑎 (by theorem 8)
∴ 𝑏 − 𝑎 ≥ 0( by theorem 13)

∴ 𝑎 ≤ 𝑏.

 

Theorem 15: 

 If (𝑎𝑛) → 𝑙, (𝑏𝑛) → 𝑙 and 𝑎𝑛 ≤ 𝑐𝑛 ≤ 𝑏∗ for all n, (𝑐a) → 𝑙. 

Proof: 

Let 𝜀 > 0 be given. 

Since (𝑎N) → 𝑙, there exists 𝑛1 ∈  N such that 𝑙 − 𝜀 < 𝑎𝑛 < 𝑙 + 𝜀, for all 𝑛 ≥ 𝑛1. 

Similarly, there exists 𝑛2 ∈ 𝐍 such that 𝑙 − 𝜀 < 𝑏𝑛 < 𝑙 + 𝜀 for all 𝑛2 

Let 𝑚 = max{𝑛1, 𝑛2}. 
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 ∴ 𝑙 − 𝜀 < 𝑎𝑛 ≤ 𝑐𝑛 ≤ 𝑏𝑛 < 𝑙 + 𝜀 forall 𝑛 ≥ 𝑚.

 ∴ 𝑙 − 𝜀 < 𝑐𝑛 < 𝑙 + 𝜀 for all 𝑛 ≥ 𝑚.

 ∴ |𝑐𝑛 − 𝑙| < 𝜀 for all 𝑛 ≥ 𝑚.

 ∴ (𝑐𝑛) → 𝑙.

 

Theorem 16: 

 If (𝑎𝑛) → 𝑎 and 𝑎𝑛 ≥ 0 for all 𝑛 and 𝑎 ≠ 0,  𝑡ℎ𝑒𝑛 (√𝑎𝑛) → √𝑎. 

Proof:  

Since 𝑎𝑛 ≥ 0 for all 𝑛, 𝑎 ≥ 0. (by theorem 13) 

 Now, |√𝑎𝑛 − √𝑎| = |
𝑎𝑛 − 𝑎

√𝑎𝑛 + √𝑎
| 

Since (𝑎𝑛) → 𝑎 = 0, as in theorem 11 we obtain 𝑎∗ >
1

2
𝑎 for all 𝑛 ≥ 𝑛1 

∴ √𝑎4 > √(
1

2
𝑎)  for all 𝑛 ≥ 𝑛1.      

∴ |√𝑎𝑛 − √𝑎| <
√2

(√2+1)√𝑎
|𝑎𝑛 − 𝑎| for all 𝑛 ≥ 𝑛1    ……….. (1) 

Now, let 𝜀 > 0 be given. 

Since (𝑎𝑛) → 𝑎, there exists 𝑛2 ∈  N such that 

|𝑎𝑛 − 𝑎| < 𝜀√𝑎(√2 + 1)/√2 for all 𝑛 ≥ 𝑛2  ………….(2) 

Let 𝑚 = max{𝑛1, 𝑛2}. 

Then |√𝑎𝑛 − √𝑎| < 𝜀 for all 𝑛 ≥ 𝑚 (by 1 and 2 ). 

∴ (√𝑎𝑛) → √𝑎 

Theorem 17: 

If (𝑎𝑛) → ∞ and (𝑏𝑛) → ∞ then (𝑎𝑛 + 𝑏𝑛) → ∞. 

Proof: 
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Let 𝑘 > 0 be any given real number. 

Since (𝑎𝑛) → ∞, there exists 𝑛1 ∈  N such that 𝑎𝑛 >
1

2
𝑘 for all 𝑛 ≥ 𝑛1. 

Similarly, there exists 𝑛2 ∈  N such that 𝑏𝑛 >
1

2
𝑘 for all 𝑛 ≥ 𝑛2. 

Let 𝑚 = max{𝑛1, 𝑛2}. 

Then 𝑎𝑛 + 𝑏𝑛 > 𝑘 for all 𝑛 ≥ 𝑚. 

∴ (𝑎𝑛 + 𝑏𝑛) → ∞ 

Theorem 18:  

If (𝑎𝑛) → ∞ and (𝑏𝑛) → ∞ then (𝑎𝑛𝑏𝑛) → ∞. 

Proof:  

Let 𝑘 > 0 be any given real number. 

Since (𝑎𝑛) → ∞, there exists 𝑛1 ∈  N such that 𝑎𝑛 > √𝑘 for all 𝑛 ≥ 𝑛1. 

Similarly there exists 𝑛2 ∈  N such that 𝑏𝑛 > √𝑘 for all 𝑛 ≥ 𝑛2.. 

Let 𝑚 = max{𝑛1, 𝑛2}. 

Then 𝑎𝑛𝑏𝑛 > 𝑘 for all 𝑛 ≥ 𝑚. 

∴ (𝑎𝑛𝑏𝑛) → ∞ 

Theorem 19: 

Let (𝑎𝑛) → ∞. Then 

(i) if 𝑐 > 0, (𝑐𝑎𝑛) → ∞. 

(ii) if 𝑐 < 0, (𝑐𝑎𝑛) → −∞. 

Proof:  

(i) Let 𝑐 > 0. Let 𝑘 > 0 be any given real number. 

Since (𝑎𝑛) → ∞, there exists 𝑚 ∈ 𝑁 such that 𝑎𝑛 > 𝑘/𝑐 for all 𝑛 ≥ 𝑚 

∴ 𝑐𝑎𝑛 > 𝑘 for all 𝑛 ≥ 𝑚 

∴ (𝑐𝑎𝑛) → ∞ 
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(ii) Let 𝑐 < 0. Let 𝑘 < 0 be any given real number. Then 𝑘/𝑐 > 0, 

∴ There exists 𝑚 ∈  N such that 𝑎𝑛 > 𝑘/𝑐 for all 𝑛 ≥ 𝑚. 

∴ 𝑐𝑎𝑛 < 𝑘 for all 𝑛 ≥ 𝑚 (since 𝑐 < 0). 

∴ (𝑐𝑎a) → −∞. 

Theorem 20: 

 If (𝑎𝑛) → ∞ and (𝑏𝑛) is bounded then (𝑎𝑛 + 𝑏𝑛) → ∞. 

Proof: 

Since (𝑏𝑠) is bounded, there exists a real number 𝑚 < 0 such ithat 

𝑏𝑛 > 𝑚 for all 𝑛.    ………….(1) 

Now, let 𝑘 > 0 be any real number. 

Since 𝑚 < 0, 𝑘 −𝑚 > 0. 

Since (𝑎𝑛) → ∞, there exists 𝑛0 ∈ 𝑁 such that 

 𝑎𝑛 > 𝑘 −𝑚 for all 𝑛 ≥ 𝑛0    ………… . . (2)

∵ 𝑎𝑛 + 𝑏𝑛 > 𝑘 − 𝑚+𝑚 = 𝑘 for all 𝑛 ≥ 𝑛0 (by 1 and 2).

 ∴ (𝑎𝑛 + 𝑏𝑛) → ∞.

 

Problem 1.  

Show that lim
𝑛→−

 
3𝑛2+2𝑛+5

6𝑛2+4𝑛+7
=

1

2
. 

Solution: 

 𝑎𝑛 =
3𝑛2+2𝑛+5

6𝑛2+4𝑛+7
=

3+
2

𝑛
+
5

𝑛2

6+
4

𝑛
+
7

𝑛2

. 

Now, lim
𝑥→−

  (3 +
2

𝑛
+

5

𝑛2
) = 3 + 2 lim

𝑛→−∞
 
1

𝑛
+ 5 lim

𝑥→−𝑛2
 
1

2
. 

                                      = 3 + 0+ 0 = 3 

Similarly, lim
𝑛→∞

  (6 +
4

𝑛
+

7

𝑛2
) = 6. 
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∴ lim
𝑛→∞

 𝑎𝑛 = lim
𝑛→∞

 
(3 +

2
𝑛 +

5
𝑛2
)

(6 +
4
𝑛 +

7
𝑛2
)

 =
lim
𝑛→∞

  (3 +
2
𝑛 +

5
𝑛2
)

lim
𝑛→∞

  (6 +
4
𝑛 +

7
𝑛2
)

 =
3

6
=
1

2
.

 

Problem 2:  

Show that lim
𝑛→∞

  (
12+22+⋯…..+𝑛2

𝑛3
) =

1

3
. 

Solution:  

We know that 12 + 22 +⋯ .+𝑛2 =
𝑛(𝑛+1)(2𝑛+1)

6
. 

∴ lim
𝑛→−∞

 
12 + 22 +⋯ .+𝑛2

𝑛3
 = lim

𝑛→∞
 
𝑛(𝑛 + 1)(2𝑛 + 1)

6𝑛3

 = lim
𝑛→−∞

 
1

6
(1 +

1

𝑛
) (2 +

1

𝑛
)

 =
1

3

 

Problem 3:  

Show that lim
𝑛→∞

 
𝑛

√(𝑛2+1)
= 1. 

Solution: 

lim𝑛→−−  
𝑛

√(𝑛2 + 1)
= lim𝑛→−∞  

1

√(1 +
1
𝑛2
)

 

 =
1

lim
𝑛→−∞

 √(1 +
1
𝑛2
)

( by theorem 11) 

 =
1

√ lim
𝑛→∞

  (1 +
1
𝑛2
)

( by theorem 16)

 = 1
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Problem 4: 

Show that if (𝑎𝑛) → 0 and (𝑏𝑛) is bounded, then (𝑎𝑛𝑏𝑛) → 0. 

Solution: 

 Since (𝑏𝑛) is bounded, there exists 𝑘 > 0 such that |𝑏𝑛|𝑘𝑘 all 𝑛. 

∴ |𝑎𝑛𝑏𝑛| ≤ 𝑘|𝑎𝑛|.  

Now, let 𝜀 > 0 be given. 

Since (𝑎𝑛) → 0, there exists 𝑚 ∈  N such that |𝑎𝑛| < 𝜀/𝑘 for all 𝑛𝛾1 

 ∴ |𝑎𝑛𝑏𝑛| < 𝜀 for all 𝑛 ≥ 𝑚.

 ∴ (𝑎𝑛𝑏𝑛) → 0.
 

Problem 5:  

Show that lim
𝑛→−∞

 
sin 𝑛

𝑛
= 0. 

Solution: 

 |sin 𝑛| ≤ 1 for all 𝑛. 

∴ (sin 𝑛) is a bounded sequence. 

 Also, (
1

𝑛
) → 0

∴ (
sin 𝑛

𝑛
) → 0  (by problem 4)

 

Problem 6:  

Show that lim
𝑛→−∞

 (𝑎1/𝑛) = 1 where 𝑎 > 0 is any real muntrat. 

Solution: 

 Case (i) 

 Let 𝑎 = 1. Then 𝑎1/𝑛 = 1 for each 𝑛. 

 Hence (𝑎1/𝑛) → 1 
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Case (ii)  

Let 𝑎 > 1. Then 𝑎1/𝑛 > 1. 

Let 𝑎1/𝑛 = 1 + ℎ𝑛 where ℎ𝑛 > 0. 

∴ 𝑎 = (1 + ℎ𝑛)
𝑛

 = 1 + 𝑛ℎ𝑛 +⋯…+ ℎ𝑛
𝑛

 > 1 + 𝑛ℎ𝑛 .

∴ ℎ𝑛 <
𝑎 − 1

𝑛
.

∴ 0 < ℎ𝑛 <
𝑎 − 1

𝑛
.

 

Hence lim
𝑛→−∞

 ℎ𝑛 = 0. 

∴ (𝑎1/𝑛) = (1 + ℎ𝑛) → 1 

Case (iii)  

Let 0 < 𝑎 < 1. Then 1/𝑎 > 1. 

 ∴ (1/𝑎)
1
𝑛 → 1  (by case ( ii) ).

 ∴ (
1

𝑎
1
𝑛

) → 1.
 

∴ (𝑎1/𝑛) → 1  (by theorem 11) 

Problem 7: 

Show that lim(𝑛1/𝑛) = 1. 

Solution:  

Clearly 𝑛1/𝑛 ≥ 1 for all 𝑛. 

Let 𝑛1/𝑛 ≥ 1 + ℎ𝑛 where ℎ𝑛 ≥ 0. 

Then 𝑛 = (1 + ℎ𝑛)
𝑛 

= 1 + 𝑛ℎ𝑛 + 𝑛𝑐2ℎ𝑛
2 +⋯…+ ℎ𝑛

𝑛 
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>
1

2
𝑛(𝑛 − 1)ℎ𝑛

2 

∴ ℎ𝑛
2 <

2

𝑛−1
. 

∴ ℎ𝑛 < √
2

𝑛−1
. 

 Since √
2

𝑛 − 1
→ 0 and ℎ𝑛 ≥ 0, (ℎ𝑛) → 0.

 ∴ (𝑛1/𝑛) = (1 + ℎ𝑛) → 1

 

Problem 8.  

Show that lim
𝑛→−∞

  (
1

√(2𝑛2+1)
+

1

√(2𝑛2+2)
+⋯…+

1

√(2𝑛2+𝑛)
) =

1

√2
 

Solution:  

Let 𝑎𝑛 =
1

√(2𝑛2+1)
+

1

√(2𝑛2+2)
+⋯+

1

√(2𝑛2+𝑛)
 

Then we have the inequality 
𝑛

√(2𝑛2+𝑛)
≤ 𝑎𝑛 ≤

𝑛

√(2𝑛2+1)
. 

∴
1

√(2+
1
𝑛)

≤ 𝑎𝑛 ≤
1

√(2 +
1
𝑛2
)

 

Now, lim
𝑛→−∞

 
1

√(2+
1

𝑛
)

= lim
𝑛→−∞

 
1

√(2+
1

𝑛2
)

=
1

√2
. 

∴ lim
𝑛→∞

 𝑎𝑛 =
1

√2
 (by theorem 15). 

Problem 9:  

Give an example to show that if (𝑎𝑛) is a sequence diverging ∞ and (𝑏𝑛) is a sequence 

diverging to −∞ then (𝑎𝑛 + 𝑏𝑛) need not be: divergent sequence. 

Solution: 
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Let (𝑎𝑛) = (𝑛) and (𝑏𝑛) = (−𝑛). 

Clearly (𝑎𝑛) → ∞ and (𝑏𝑛) → −∞. 

However (𝑎𝑛 + 𝑏𝑛) is the constant sequence 0,0,0,… ... which converges to 0 . 

Exercises. 

1.Evaluate the limits of the following sequences as 𝑛 → ∞. 

(a) (
3𝑛−4

2𝑛+7
)                      (b) (

4−2𝑛+6𝑛2

7−6𝑛+9𝑛2
)                  (c) (

(𝑛2+3)(𝑛3+9)

(𝑛+1)(𝑛4+6)
) 

(d) (√(𝑛2 + 𝑛) − 𝑛)    (e) 
√(3𝑛2−5𝑛+4)

2𝑛−7
                (f) (

𝑛2+𝑛+1

𝑛3+2
) 

(g) (
1+2+3+⋯…..+𝑛

𝑛2
)        (h) ((−1)𝑛/𝑛)                (h) 

𝑛2

√(𝑛4+3𝑛2+1)
 

2. A sequence (𝑎𝑛) is called a null sequence if (𝑎𝑛) → 0. Show that if (𝑎𝑛) and (𝑏𝑛) are null 

sequences then (𝑎𝑛 + 𝑏𝑛), (𝑎𝑛𝑏𝑛), (𝑘𝑎𝑛) and ( |𝑎𝑛|) are also null sequences. 

3. If (𝑎𝑛) → −∞ and (𝑏𝑛) → −∞, then show that (𝑎𝑛 + 𝑏𝑛) → −∞ and (𝑎𝑛𝑏𝑛) → ∞. 

4. If (𝑎𝑛) → −∞, then show that (𝑘𝑎𝑛) → −∞  if 𝑘 > 0 and (𝑘𝑎𝑛) → ∞ if 𝑘 < 0. 

5. If (𝑎𝑛) → −∞ and (𝑏𝑛) is a bounded sequence then show that (𝑎𝑖 + 𝑏𝑛) → −∞. 

6. Show that following sequences diverge to ∞. 

(a) (𝑛3 + 𝑛2 + 𝑛 + 1) 

(b) (𝑛 + (−1)𝑛/𝑛2) 

(c) (𝑛𝑛) 

(d) (
𝑛2+3𝑛+1

𝑛+1
)  ( Hint :

𝑛2+3𝑛+1

𝑛+1
= 𝑛 + 2−

1

𝑛+1
). 

7. Prove the following. 

(a) lim𝑛→−   (
1

√(𝑛2+1)
+

1

√𝑛2+2
+⋯ . . +

1

√(𝑛2+𝑛
) = 1. 

(b) lim𝑛→∞   (
1

𝑛2
+

1

(𝑛+1)2
+⋯ .+

1

(2𝑛)2
) = 0. 

(c) lim𝑛→∞   (
1

√𝑛
+

1

√(𝑛+1)
+⋯ .+

1

√(2𝑛)
) = ∞. 

8. Give examples of sequences (𝑎𝑛) and (𝑏𝑛) such that 

(a) (𝑎𝑛) → ∞, (𝑏𝑛) → ∞ and (𝑎𝑛 − 𝑏𝑛) converges. 

(b) (𝑎𝑛) → ∞, (𝑏𝑛) → ∞ and (𝑎𝑛 − 𝑏𝑛) converges to 5 . 

(c) (𝑎𝑛) → ∞, (𝑏𝑛) → ∞ and (𝑎𝑛 − 𝑏𝑛) → ∞. 
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Unit II 

  Behaviour of Monotonic Sequences – Some theorem on limits – Sub sequences – Limit points 

– Cauchy sequences.  

Chapter 2: Sections 2.1 – 2.5. 

 

 

2.1. Behaviour of Monotonic Sequences: 

The following theorem gives the complete behaviour of monotonic sequences. 

Theorem 1: 

(i) A monotonic increasing sequence which is bounded above converges to its. 1.u.b. 

(ii) A monotonic increasing sequence which is not bounded above diverges to ∞ 

(iii) A monotonic decreasing sequence which is bounded below converges to its g.l.b. 

(iv) A monotonic decreasing sequence which is not bounded below diverges to −∞. 

Proof: 

(i)Let (𝑎𝑛) be a monotonic increasing sequence which is bounded above.  

Let 𝑘 be the 𝑙, 𝑢, 𝑏 of the sequence. 

Then 𝑎𝑛 ≤ 𝑘 for all 𝑛.     …………..(1) 

Now, let 𝜀 > 0 be given. 

∴ 𝑘 − 𝜀 < 𝑘 and hence 𝑘 − 𝜀 is not an upper bound of (𝑎𝑛). 

Hence, there exists 𝑎𝑚 such that 𝑎𝑚 > 𝑘 − 𝜀. 

Now, since (𝑎𝑛) is monotonic increasing, 𝑎𝑛 ≥ 𝑎𝑚 for all 𝑛 ≥ 𝑚. 

Hence 𝑎𝑛 > 𝑘 − 𝜀 for all 𝑛 ≥ 𝑚     …………(2) 

∴ 𝑘 − 𝜀 < 𝑎𝑛 ≤ 𝑘 for all 𝑛 ≥ 𝑚 (by 1 and 2 ) 

∴ |𝑎𝑛 − 𝑘| < 𝜀, for all 𝑛 ≥ 𝑚. 

∴ (𝑎𝑛) → 𝑘. 

(ii) Let (𝑎𝑛) be a monotonic increasing sequence which is not bounded above. 
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Let 𝑘 > 0 be any real number. 

Since (𝑎𝑛) is not bounded, there exists 𝑚 ∈  N such that 𝑎𝑚 > 𝑘.  

Also 𝑎𝑛 ≥ 𝑎𝑚 for all 𝑛 ≥ 𝑚. 

 ∴ 𝑎𝑛 > 𝑘 for all 𝑛 ≥ 𝑚.

 ∴ (𝑎𝑛) → ∞.
 

Proof of (iii) is similar to that of (i). 

Proof of (iv) is similar to that of (ii). 

Note: 

The above theorem shows that a monotonic sequence cither converges or diverges. Thus a 

monotonic sequence cannot be an oscillating sequence. 

Problem 1:  

Let 𝑎𝑛 = 1 +
1

1!
+

1

2!
+⋯ .+

1

𝑛!
  Show that lim

𝑛→∞
 𝑎𝑛 exists and lies between 2 and 3 . 

Solution: 

Clearly (𝑎𝑛) is a monotonic increasing sequence. 

 Also, 

𝑎𝑛 = 1 +
1

1!
+
1

2!
+⋯+

1

𝑛!

 ≤ 1 + 1 +
1

2
+
1

22
+⋯…+

1

2𝑛−1

 = 1 + (
1 −

1
2𝑛

1 −
1
2

)

 = 1 + 2 (1 −
1

2𝑛
)

 = 3 −
1

2𝑛−1
< 3

 

∴ 𝑎𝑛 < 3. 

∴ (𝑎𝑛) is bounded above. 

∴ lim𝑎𝑛 exists. 

Also 2 < 𝑎𝑛 < 3 for all 𝑛. 
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∴ 2 ≤ lim𝑎𝑛 ≤ 3. 

Hence the result. 

Note:  

The limit of the above sequence is denoted by e. 

Problem 2: 

Show that the sequence (1 +
1

𝑛
)
𝑛

 converges. 

Solution: 

Let 𝑎𝑛 = (1 +
1

𝑛
)
𝑛

  

By binomial theorem, 

𝑎𝑛 =1 + 1 +
𝑛(𝑛 − 1)

2!

1

𝑛2
+
𝑛(𝑛 − 1)(𝑛 − 2)

3!

1

𝑛3
+⋯ . . +

1

𝑛𝑛

=1 + 1 +
1

2!
(1 −

1

𝑛
) +

1

3!
(1 −

1

𝑛
)(1 −

2

𝑛
) +

 …… . . . +
1

𝑛!
(1 −

1

𝑛
) (1 −

2

𝑛
)…(1 −

𝑛 − 1

𝑛
)

 < 1 + 1 +
1

2!
+
1

3!
+ ⋯ . . +

1

𝑛!
 < 3      ( refer problem 1).

 ∴ (𝑎𝑛) is bounded above. 

 

Also, 

𝑎𝑛+1 = 1 + 1 +
1

2!
(1 −

1

𝑛 + 1
) +

1

3!
(1 −

1

𝑛 + 1
) (1 −

2

𝑛 + 1
) +⋯… . .

…+
1

(𝑛 + 1)!
(1 −

1

𝑛 + 1
)……(1 −

𝑛

𝑛 + 1
)

= 1 + 1 +
1

2!
(1 −

1

𝑛
) +

1

3!
(1 −

1

𝑛
)(1 −

2

𝑛
) +⋯

……+
1

𝑛!
(1 −

1

𝑛
)(1 −

2

𝑛
)…(1 −

𝑛 − 1

𝑛
) .

 

∴ 𝑎𝑛+1 > 𝑎𝑛 

∴ (𝑎𝑛) is monotonic increasing, 

∴ (𝑎𝑛) is a convergent sequence. 
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Problem 3:  

Show that lim𝑛→∞   (1 +
1

𝑛
)
𝑛

= lim𝑛→∞   (1 +
1

1!
+⋯…+

1

𝑛!
) = 𝑒  

Solution: 

Let 𝑎𝑛 = (1 +
1

𝑛
)
𝑛

 and 𝑏𝑛 = 1 +
1

1!
+⋯ .+

1

𝑛!
. 

Then 𝑎𝑛 < 𝑏𝑛 for all 𝑛 (refer problem 2 above). 

∴ lim𝑛→∞  𝑎𝑛 ≤ lim𝑛→∞  𝑏𝑛     …………..(1) 

Now, let 𝑚 > 𝑛. 

𝑎𝑚 = (1 +
1

𝑚
)
𝑚

 = 1 + 1 +
1

2!
(1 −

1

𝑚
) +

1

3!
(1 −

1

𝑚
) (1 −

2

𝑚
) +⋯ .

 +
1

𝑛!
(1 −

1

𝑚
)⋯(1 −

𝑛 − 1

𝑚
) + ⋯ .+

1

𝑚!
(1 −

1

𝑚
)⋯ . . (1 −

𝑚 − 1

𝑚
)

 > 1 + 1 +
1

2!
(1 −

1

𝑚
) +⋯…+

1

𝑛!
(1 −

1

𝑚
)⋯… . . (1 −

𝑛 − 1

𝑚
)

 

Fixing 𝑛 and taking limit as 𝑚 → ∞ we get 

lim
𝑚→∞

 �̇�𝑚 ≥ 1 + 1 +
1

2!
+ ⋯…+

1

𝑛!
= 𝑏𝑛 

Now taking limit as 𝑛 → ∞ we get 

lim
𝑚→∞

 𝑎𝑚 ≥ lim
𝑚→∞

 𝑏𝑛     ………….. (2) 

∴ lim
𝑛→∞

 𝑎𝑛 = lim
𝑛→∞

 𝑏𝑛 = 𝑒( by (1) and (2))  

Problem 4: 

 Let 𝑎𝑛 =
1

𝑛+1
+

1

𝑛+2
+⋯ .+

1

𝑛+𝑛
. Show that (𝑎𝑛) converges. 

Solution: 

 𝑎𝑛+1 − 𝑎𝑛 
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= (
1

𝑛 + 2
+⋯…+

1

2𝑛 + 2
) − (

1

𝑛 + 1
+ ⋯…+

1

𝑛 + 𝑛
) 

=
1

2𝑛 + 1
+

1

2𝑛 + 2
−

1

𝑛 + 1
. 

=
1

2𝑛 + 1
−

1

2𝑛 + 2
> 0 for all 𝑛 

∴ 𝑎𝑛+1 > 𝑎𝑛 for all 𝑛. 

∴ (𝑎𝑛) is a monotonic increasing sequence. 

Also 𝑎𝑛 =
1

𝑛+1
+

1

𝑛+2
+⋯…+

1

𝑛+𝑛
. 

<
1

𝑛
+

1

𝑛
+⋯ . . +

1

𝑛
= 1 for all 𝑛. 

∴ (𝑎𝑛) is bounded above. 

∴ (𝑎𝑛) converges. 

Problem 5: 

Let 𝑎�̇� = 1 +
1

2
+

1

3
+   +

1

𝑛
. Show that (𝑎𝑛) diverges to ∞. 

Solution: 

Clearly ( 𝑎𝑛 ) is a monotonic increasing sequence: 

 Now, let 𝑚 = 2𝑛 − 1 

𝑎𝑚 = 1 +
1

2
+⋯…+

1

2𝑛 − 1
 

= 1 + (
1

2
+
1

3
) + (

1

4
+
1

5
+
1

6
+
1

7
) + ⋯ .+(

1

2𝑛−1
+⋯ . . +

1

2𝑛 − 1
) 

 > 1 + (
1

4
+
1

4
) + (

1

8
+
1

8
+
1

8
+
1

8
) + ⋯…… . (

1

2𝑛
+⋯…… . .+

1

2𝑛
)

 = 1 + (𝑛 − 1)
1

2
=
1

2
(𝑛 + 1)

 

∴ 𝑎𝑚 >
1

2
(𝑛 + 1) 
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∴ (𝑎𝑛) is not bounded above. Hence (𝑎𝑛) → ∞. 

Problem 6:  

Prove that (
𝑛!

𝑛𝑛
) converges. 

Solution: 

Let 𝑎𝑛 =
𝑛!

𝑛𝑛
. 

Then 
𝑎𝑛

𝑎𝑛+1
=

𝑛!

𝑛𝑛
(𝑛+1)𝑛+1

(𝑛+1)!
= (

𝑛+1

𝑛
)
𝑛

> 1. 

∴ 𝑎𝑛 > 𝑎𝑛+1 forall 𝑛 ∈  N. 

∴ (𝑎𝑛) is a monotonic decreasing sequence. 

Also 𝑎𝑛 > 0 for all 𝑛 ∈ 𝑁. 

∴ (𝑎𝑛) is bounded below. 

∴ (𝑎𝑛) converges. 

Problem 7: 

Discuss the behaviour of the geometric sequence (𝑟𝑛) . 

Solution: 

Case (i) Let 𝑟 = 0. 

Then (𝑟𝑛) reduces to the constant sequence 0,0,… . . ... and hence converges to 0. 

In this case (𝑟𝑛) reduces to the constant sequence 1,1,1,… . ... and hence converges to 1. 

In this case, (𝑟𝑛) is a monotonic decreasing sequence and (𝑟𝑛) > 0 

∴ (𝑟𝑛) is monotonic decreasing and bounded below and hence (𝑟𝑛) converges. 

Let (𝑟𝑛) → 𝑙 

Since 𝑟𝑛 > 0 for all 𝑛, 𝑙 > 0.    ……………(1) 

We claim that 𝑙 = 0. 

Let 𝜀 > 0 be given. Since (𝑟𝑛) → 𝑙, there exists 𝑚 ∈ 𝑁 such that 

1 < 𝑟𝑛 < 𝑙 + 𝜀 for all 𝑛 ≥ 𝑚. 

Fix 𝑛 > 𝑚. Then 𝑙 < 𝑟𝑛+1     ………….(2) 
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Also 𝑟𝑛+1 = 𝑟. 𝑟𝑛 < 𝑟(𝑙 + 𝜀).    …………..(3) 

∴ 𝑙 < 𝑟(𝑙 + 𝜀)  (by 2 and 3 ). 

∴ 1 < (
𝑟

1−𝑟
) 𝜀. 

Since this is true for every 𝜀 > 0, we get 𝑙 ≤ 0.  ………….(4) 

∴ 𝑙 = 0   ( by 1 and 4). 

Case(iv) Let −1 < 𝑟 < 0. 

Then 𝑟𝑛 = (−1)𝑛|𝑟|𝑛 where 0 < |𝑟| < 1. = 

By cast (iii) (|𝑟|𝑛) → 0. 

Also ((−1)𝑛) is a bounded sequencé. 

∴ ((−1)𝑛|𝑟|𝑛) converges to 0 (by problem 4 of 3.6 ) 

∴ (𝑟𝑛) → 0. 

Case (v) Let 𝑟 = −1. 

In this case (𝑟𝑛) reduces to −1,1,−1, which oscillates finitely. 

Case (vi) Let 𝑟 > 1. 

Then 0 <
1

𝑟
< 1 and hence (

1

𝑟𝑛
) → 0 (by case (iii)) 

∴ (𝑟𝑛) → ∞ : (by theorem 5 of 1.5) 

Case (vii) Let 𝑟 < −1. 

Then the terms of the sequence (𝑟𝑛) are alternatively positive and negative. Also |𝑟| > 1 and 

hence by case (vi) (|𝑟|𝜇) is unbounded. 

∴ (𝑟𝑛) oscillates infinitely. 

Thus (i) (𝑟∗) converges if −1 < 𝑟 ≤ 1. 

(ii) (𝑟𝑛) diverges if 𝑟 > 1. 

(iii) (𝑟′′) oscillates if 𝑟 ≤ −1. 

Problem 8: 

Show that if |𝑟| < 1 then (𝑛𝑟𝑛) → 0. 

Solution. The result is trivial if 𝑟 = 0. 
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 Let 0 < |𝑟| < 1. Then |𝑟| =
1

1 + 𝑝
, 𝑝 > 0.

∴ |𝑟|𝑛 =
1

(1 + 𝑝)𝑛

 =
1

1 + 𝑛𝑝 +
𝑛(𝑛 − 1)
1.2 𝑝2 +⋯… . .

 <
2

𝑛(𝑛 − 1)𝑝2

 ∴ |𝑛𝑟𝑛| <
2

(𝑛 − 1)𝑝2

 

Now, let 𝜀 > 0 be given. 

 Then 
2

(𝑛 − 1)𝑝2
< 𝜀 provided 𝑛 > 1 +

2

𝑝2𝜀

 ∴ |𝑛𝑟𝑛| < 𝜀 if 𝑛 > 1 +
2

𝑝2𝜀
.

 ∴ lim
𝑛→∞

 𝑛𝑟𝑛 = 0

 

Problem 9: 

Show that lim
𝑛→∞

 
log 𝑛

𝑛𝑝
= 0 if 𝑝 > 0. 

Solution: 

We have 𝑒𝑝 > 1 ( since 𝑒 > 1) 

∴
1

𝑒𝑝
< 1 

∴ (
𝑛

(𝑒𝑝)
𝑛) → 0  (by problem 8 ). 

∴  Given 𝜀 > 0, there exists a natural number 𝑚 such that 

𝑛

𝑒𝑛
<

𝜀

𝑒𝑝
 for all 𝑛 ≥ 𝑚. 

Now, let 𝑔 be the positive integer such that 𝑔 ≤ log 𝑛 < (𝑔 + 1).   

∴
log 𝑛

𝑛𝑝
 <

𝑔 + 1

𝑛𝑝
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≤
𝑔 + 1

(𝑒𝑔)𝑝
 ( since 𝑒𝑔 ≤ 𝑛 by (2)) 

=
𝑒𝑝(𝑔 + 1)

𝑒𝑝(𝑔+1)
 

< 𝑒𝑝 (
𝜀

𝑒𝑝
)  provided 𝑔 + 1 ≥ 𝑚 ( using 1) 

∴
log 𝑛

𝑛𝑝
 < 𝜀 provided 𝑔 + 1 ≥ 𝑚. 

Now, if 𝑛 ≥ 𝑒𝑚, then log 𝑛 ≥ 𝑚. 

But 𝑔 + 1 > log 𝑛 (by (2)) 

 ∴ 𝑛 ≥ 𝑒𝑚 ⇒ 𝑔 + 1 ≥ 𝑚.

 ∴
log 𝑛

𝑛𝑝
< 𝜀 provided 𝑛 ≥ 𝑒𝑚 .

 ∴ lim
𝑛→∞

 
log 𝑛

𝑛𝑝
= 0.

 

Problem 10:  

Let (𝑎𝑛) and (𝑏𝑛) be two sequences of positive terms such that 𝑎𝑛+1 =
1

2
(𝑎𝑛 + 𝑏𝑛) and 

𝑏𝑛+1 = √(𝑎𝑛𝑏𝑛). Prove that (𝑎𝑛) and (𝑏𝑛) converge to the same limit. 

Solution: 

By hypothesis, 𝑎𝑛+1 and 𝑏𝑛+1 are respectively the A.M. and 𝐶.M  between 𝑎𝑛 and 𝑏𝑛. 

Also we know that A.M. ≥ G.M. 

Hence 𝑎𝑛+1 ≥ 𝑏𝑛+1    ………..(1) 

Moreover the A.M. and G.M. of two numbers lie between the  𝑤0 numbers. 

∴ 𝑎𝑛 ≥ 𝑎𝑛+1 ≥ 𝑏𝑛 for all 𝑛 ∈  N.     ………….(2) 

and 𝑎𝑛 ≥ 𝑏𝑛+1 ≥ 𝑏𝑛 for all 𝑛 ∈  N.     ……………(3) 

∴ 𝑎𝑛 ≥ 𝑎𝑛+1 ≥ 𝑏𝑛+1 ≥ 𝑏𝑛 for all 𝑛 ∈  N. (by 2 and 3 ) 

∴ (𝑎𝑛) is a monotonic decreasing sequence and (𝑏𝑛) is a monotonic increasing sequence. 
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Further, 𝑎𝑛 ≥ 𝑏𝑛 ≥ 𝑏1 for all 𝑛 ∈  N. 

and 𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝑎1 for all 𝑛 ∈  N. 

∴ (𝑎𝑛) is a monotonic decreasing sequence bounded below by 𝑏1 and (𝑏𝑛) is a monotonic 

increasing sequence bounded above by 𝑎1. 

 ∴ (𝑎𝑛) → 𝑙( say ) and (𝑏𝑛) → 𝑚 (say) 

 Now, 𝑎𝑛+1 =
1

2
(𝑎𝑛 + 𝑏𝑛).

 Taking limit as 𝑛 → ∞, we get 𝑙 =
1

2
(𝑙 + 𝑚).

 ∴ 𝑙 = 𝑚.

 

Problem 11: 

 Let (𝑎𝑛) be a sequence of positive terms such that 𝑎1 < 𝑎2 and 𝑎𝑛+2 =
1

2
(𝑎𝑛+1 + 𝑎𝑛). Then 

show that (𝑎2𝑛−1) is a monotonic increasing sequence and ( 𝑎2𝑛 ) is a decreasing sequence 

and both converge to limit. 

Solution: 

We have 𝑎𝑛+2 =
1

2
(𝑎𝑛+1 + 𝑎𝑛) and 𝑎1 < 𝑎2     …………..(1) 

∴ 𝑎3 =
1

2
(𝑎2 + 𝑎1) and 𝑎1 < 𝑎2 

 ∴ 𝑎1 < 𝑎3 < 𝑎2   ……… . . (2)

 Also 𝑎4 =
1

2
(𝑎1 + 𝑎2) and 𝑎1 < 𝑎2( by 1 and 2).

 ∴ 𝑎3 < 𝑎4 < 𝑎2     ………… . . (3)

∴ 𝑎1 < 𝑎3 < 𝑎4 < 𝑎2  (by 2 and 3)

 

Proceeding as above, we get 𝑎1 < 𝑎3 < 𝑎5 < 𝑎6 < 𝑎4 < 𝑎2 and so on. 

∴ (𝑑2𝑛) is a monotonic decreasing sequence bounded below by 𝑎1 and (𝑎2𝑛−1) is a 

monotonic increasing sequence bounded above by 𝑎s- . 

∴ (𝑎2𝛼) → 1( say ) and (𝑎2𝑛−1) → 𝑚 (say ). 

Now, 𝑎2𝑛+2 =
1

2
(𝑎2𝑛+1 + 𝑎2𝑛) ( by 1) 

Taking limit as 𝑛 → ∞, we get 𝑙 =
1

2
(𝑚 + 𝑙). 
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∴ 𝑙 = 𝑚. 

Now, let 𝜀 > 0 be given. Since (𝑎2𝛼) → 𝑙, there exists 𝑛 ∈  N such that |𝑎2𝑛 − 𝑙| < 𝜀 for all 

𝑛 ≥ 𝑛1. 

Similarly there exists 𝑛2 ∈  N such that |𝑎2𝑛−1 − 𝑙| < 𝜀 ⋅ for all 𝑛 ≥ 𝑛2. Let 𝑚 =

max{𝑛1, 𝑛2} 

Then |𝑎𝑛 − 𝑙| < 𝜀 for all 𝑛 ≥ 𝑚. 

∴ (𝑎𝑛) → 𝑙. 

Now, 𝑎𝑛+2 =
1

2
(𝑎𝑛+1 + 𝑎𝑛) 

𝑎𝑛+1 =
1

2
(𝑎𝑛 + 𝑎𝑛−1). 

…………… 

………….... 

 𝑎4 =
1

2
(𝑎3 + 𝑎2). 

𝑎3 =
1

2
(𝑎2 + 𝑎1). 

Adding, we get 𝑎𝑛+2 =
1

2
(𝑎1 + 2𝑎2). 

Taking limit as 𝑛 → ∞, we get  

𝑙 +
1

2
𝑙 =

1

2
(𝑎1 + 2𝑎2) 

𝑙 =
1

3
(𝑎1 + 2𝑎2). 

Exercises: 

1. Let (𝑎0) be a sequence of positive terms such that 𝑎1 < 𝑎2 and 𝑎𝑛+2 = √(𝑎𝑛+1𝑎𝑛). 

Then show that ( 𝑎2+−) is a monotonic increasing scquence and ( 𝑎2 ) is a monotonic 

decreasing sequence and both converge to the common limit (𝑎1𝑎2
2)1/3. Hence deduce 

that ( 𝑎2 ) converges to the same limit. 
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2. Let (𝑎N) be a sequence of positive terms such that 𝑎1 < 𝑎2 and 𝑎𝑛+2 =
2𝑎∗−1𝑎∗

𝑎𝑛+1+𝑎∗
. Then 

show that (𝑎2+−1) is a monotonic increasing sequence and 𝑎2, is a monotonic 

decreasing sequence and both converge to the common limit 
𝑎1𝑎2

3(2𝑎1+𝑎2)
. Hence deduce 

that ( 𝑎n ) converges to the same limit. 

3. Verify whether the following sequences are monotonic and discuss tbeir behaviour. 

(i) (
2𝑛−7

3𝑛+2
) 

(ii) (−
1

2𝑛+1
) 

(iii) (√(𝑛 + 1) − √𝑛) 

(iv) 𝑎1 = 1 and 𝑎∗+1 = √(2 + 𝑎𝑣) 

4. Prove that (
𝑎𝑛+𝑑

𝑏𝑛+𝑐
) is a monotonic increasing or decreasing or a constant sequence 

according as 𝑏𝑑 < 𝑎𝑐, 𝑏𝑑 > 𝑎𝑐, 𝑏𝑑 = 𝑎𝑐. 

5. Show that the sequence whose 𝑛th  term is 
𝑥𝑛+𝑛

𝑥𝑛−1+2𝑛
 converges to 

1

2
 if |𝑥| ≤ 1 and 

converges to 𝑥 if |𝑥| > 1. 

6. Show the sequence (𝑎2) given by 𝑎1 = √2 and 𝑎∗,1 = √(2𝑎2) for all 𝑛 ≥ 1 

converges to 2 . 

2.2. Some Theorems on Limits: 

Theorem 1: (Cauchy's first limit theorem) 

 If (𝑎𝑛) → 𝑙 then (
𝑎1 + 𝑎2 +⋯ . .+𝑎𝑛

𝑛
) → 𝑙. 

Proof: 

Case (i) Let 𝑙 = 0.  

Let𝑏𝑛 =
𝑎1 + 𝑎2 +⋯…+ 𝑎𝑛

𝑛
 

Let 𝜀 > 0 be given. Since, (𝑎𝑛) → 0 there exists 𝑚 ∈ 𝑁  
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such that |𝑎𝑛| <
1

2
𝜀 for all 𝑛 ≥ 𝑚. ………….(1) 

Now, let 𝑛 ≥ 𝑚. 

 Then |𝑏𝑛| = |
𝑎1 + 𝑎2 +⋯…+ 𝑎𝑛 + 𝑎𝑚+1 +⋯ . .+𝑎𝑛

𝑛
|

 ≤
|𝑎1| + |𝑎2| + ⋯…+ |𝑎𝑚|

𝑛
+
|𝑎𝑚+1| + ⋯ . . +|𝑎𝑛|

𝑛

 =
𝑘

𝑛
+
|𝑎𝑚+1| + ⋯…+ |𝑎𝑛|

𝑛
 where 𝑘 = |𝑎1| + ⋯ . .+|𝑎𝑚|

 <
𝑘

𝑛
+ (

𝑛 − 𝑚

𝑛
)
𝜀

2
 ( by 1)

 <
𝑘

𝑛
+
𝜀

2
( since 

𝑛 − 𝑚

𝑛
< 1)……… . (2)

 

Now, since (
𝑘

𝑛
) → 0, there exists 𝑛0 ∈  N such that 

𝑘

𝑛
<

1

2
𝜀 for all 𝑛 ≥ 𝑛0    ………….. (3) 

Let 𝑛1 = max{𝑚, 𝑛0}. 

Then |𝑏𝑛| < 𝜀 for all 𝑛 ≥ 𝑛1  (using 2 and 3 ). 

∴ (𝑏𝑛) → 0 

Case (ii) Let 𝑙 ≠ 0. 

 Since (𝑎𝑛) → 𝑙, (𝑎𝑛 − 𝑙) → 0.

 ∴ (
(𝑎1 − 𝑙) + (𝑎2 − 𝑙) +⋯+ (𝑎𝑛 − 𝑙)

𝑛
) → 0 (by case i) 

 ∴ (
𝑎1 + 𝑎2……+ 𝑎𝑛 − 𝑛𝑙

𝑛
) → 0

 ∴ (
𝑎1 + 𝑎2… . . +𝑎𝑛

𝑛
− 𝑙) → 0.

 

∴ (
𝑎1 + 𝑎2… . . +𝑎𝑛

𝑛
) → 𝑙 

Note: The converse of the above theorem is not true. For example, coset. the sequence 

(𝑎𝑛) = ((−1)
𝑛). 
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 Then 𝑏𝑛 =
𝑎1 + 𝑎2 +⋯ .+𝑎𝑛

𝑛
= {

0  if 𝑛 is even 

−
1

𝑛
 if 𝑛 is odd 

. 

Clearly (𝑏𝑛) → 0 and (𝑎𝑛) is not convergent. 

Theorem 2: (Cesaro's theorem)  

If (𝑎𝑛) → 𝑎 and (𝑏𝑛) → 𝑏then  (
𝑎1𝑏𝑛+𝑎2𝑏𝑛⋅1+⋯..+𝑎𝑛𝑏1

𝑛
) → 𝑎𝑏. 

Proof: 

 Let 𝑐𝑛 =
𝑎1𝑏𝑛+⋯….+𝑎𝑛𝑏1

𝑛
. 

Now, put 𝑎𝑛 = 𝑎 + 𝑟𝑛 so that (𝑟𝑛) → 0. 

Then 𝑐𝑛 =
(𝑎+𝑟1)𝑏𝑛+⋯…+(𝑎+𝑟𝑛)𝑏1

𝑛
. 

=
𝑎(𝑏1 +⋯…+ 𝑏𝑛)

𝑛
+
𝑟1𝑏𝑛 +⋯…+ 𝑟𝑛𝑏1

𝑛
 

Now, by Cauchy's first limit theorem, 

 (
𝑏1 + 𝑏2 +⋯…+ 𝑏𝑛

𝑛
) → 𝑏.

 ∴ (
𝑎(𝑏1 + 𝑏2 +⋯…+ 𝑏𝑛)

𝑛
) → 𝑎𝑏.

 

Hence it is enough if we prove that (
𝑟1𝑏𝑛+⋯…+𝑟𝑛𝑏1

𝑛
) → 0. 

Now, since (𝑏𝑛) → 𝑏;(𝑏𝑛) is a bounded sequence. (by theorem 2 of 1.2) 

∴ There exists a real number 𝑘 > 0 such that |𝑏𝑛| ≤ 𝑘 for all 𝑛. 

∴ |
𝑟1𝑏𝑛 +⋯…+ 𝑟𝑛𝑏1

𝑛
| ≤ 𝑘 |

𝑟1 +⋯…+ 𝑟𝑛
𝑛

|  

 Since (𝑟𝑛) → 0, (
𝑟1 +⋯…+ 𝑟𝑛

𝑛
) → 0 (by theorem 1) 

(
𝑟1𝑏𝑛 +⋯ . .+𝑟𝑛𝑏1

𝑛
) → 0

 

Hence the theorem. 
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Theorem 3: (Cauchy's second limit theorem) 

Let (𝑎𝑛) be a sequence of positive terms. Then lim
𝑛→∞

 𝑎𝑛
1/𝑛

= lim
𝑎→∞

 
𝑎𝑛+1

𝑎𝑎
 provided the limit on 

the right hand side exists, whether finite or infinite. 

Proof: 

Case (i) lim
𝑛→∞

 
𝑎𝑛+1

𝑎𝑛
= 1, finite. 

Let t > 0 be any given real number. 

Then there exists 𝑚 ∈  N such that 

𝑙 −
1

2
𝜀 <

𝑎𝑛+1

𝑎𝑛
< 𝑙 +

1

2
𝜀 for all 𝑛 ≥ 𝑚 

Now choose 𝑛 nIm. 

Then𝑙 −
1

2
𝜀 <

𝑎𝑚+1

𝑎𝑚
< 𝑙 +

1

2
𝜀 

𝑙 −
1

2
𝜀 <

𝑎𝑚+2
𝑎𝑚+1

< 𝑙 +
1

2
𝜀 

 ...... ......... ......... ....... 

……………………... 

𝑙 −
1

2
𝜀 <

𝑎𝑛
𝑎𝑛−1

< 𝑙 +
1

2
𝜀 

Multiplying these inequalities, we obtain 

(𝑙 −
1

2
𝜀)

𝑛−𝑚

<
𝑎𝑛
𝑎𝑛
< (𝑙 +

1

2
𝜀)

𝑛−𝑚

 

 ∴ 𝑎𝑚
(𝑙 −

1
2
𝜀)

𝑛

(𝑙 −
1
2 𝜀)

𝑚 < 𝑎𝑛 < 𝑎𝑚
(𝑙 +

1
2
𝜀)

𝑛

(𝑙 +
1
2 𝜀)

𝑚

∴𝑘1 (𝑙 −
1

2
𝜀)

𝑛

< 𝑎𝑛 < 𝑘2 (𝑙 +
1

2
𝜀)

𝑛

 where 𝑘1, 𝑘2 are some consume 

 ∴ 𝑘1
1/𝑛

(𝑙 −
1

2
𝜀) < 𝑎𝑛

1/𝑛
< 𝑘2

1/𝑛
(𝑙 +

1

2
𝜀)………… . (1)

 Now, (𝑘1
1/𝑛

(𝑙 −
1

2
𝜀)) → 𝑙 −

1

2
𝜀 ( since (𝑘1

1/𝑛) → 𝑙. ).
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(by solved problem 6 of 1.6 ) 

∴ There exists 𝑛1 ∈  N such that 

(𝑙 −
1

2
𝜀) −

1

2
𝜀 < 𝑘1

1/𝑛
⋅ (𝑙 −

1

2
𝜀) < (𝑙 −

1

2
𝜀) +

1

2
𝜀  for all 𝑛 ≥ 𝑛1 …………..(2) 

Similarly, there exists 𝑛2 ∈  N such that 

(𝑙 +
1

2
𝜀) −

1

2
𝜀 < 𝑘2

1/𝑛
(𝑙 +

1

2
𝜀) < (𝑙 +

1

2
𝜀) +

1

2
𝜀 for all 𝑛 ≥ 𝑛2........(3) 

Let 𝑛0 = max{𝑚, 𝑛1, 𝑛2}. 

Then 𝑙 − 𝜀 < 𝑘1
1/𝑛

(𝑙 −
1

2
𝜀) < 𝑎𝑛

1/𝑛
< 𝑘2

1/𝑛
(𝑙 +

1

2
𝜀) < 𝑙 + 𝜀 

 for all 𝑛 ≥ 𝑛0 ( by 1,2 and 3) 

∴ 𝑙 − 𝜀 < 𝑎𝑛
1/𝑛

< 𝑙 + 𝜀 for all 𝑛 ≥ 𝑛0. Hence (𝑎𝑛
1/𝑛) → 𝑙. 

Case (ii) lim
𝑛→−∞

 
𝑎𝑛+1

𝑎𝑛
= ∞. 

 Then lim
𝑛→−∞

 
(
1

𝑎𝑛+1
)

(
1
𝑎𝑛
)
= 0,  (by theorem 3.4) 

 ∴  By case (i), (
1

𝑎𝑛
)

1
𝑛
→ 0.

 ∴ (𝑎𝑛

1
𝑛) → ∞ (by theorem 5 of 1.5). 

 

Theorem 4: 

Let (𝑎𝑛) be any sequence and lim∗→   |
𝑎∗

𝑎𝑛+1
| = 𝑙. If 𝑙 > 1, then (𝑎𝑛) → 0. 

Proof: 

Let 𝑘 be any real number such that 1 < 𝑘 < 𝑙. 

 Since lim |
𝑎𝑛
𝑎𝑛+1

| = 𝐼, there exists 𝑚 ∈  N such that 

 𝑙 − 𝜀 < |
𝑎𝑛
𝑎𝑛+1

| < 𝑙 + 𝜀 for all 𝑛 ≥ 𝑚.
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Choosing 𝑘 = 𝑙 − 𝑘 we obtain |
𝑎𝑛

𝑎𝑛+1
| > 𝑘 for all 𝑛 ≥ 𝑚. 

Now, fix 𝑛 ≥ 𝑚. Then 

|
𝑎𝑛
𝑎𝑚+1

| > 𝑘; |
𝑎𝑚+1
𝑎𝑚+2

| > 𝑘; …… . . + |
𝑎𝑛−1
𝑎𝑛

| > 𝑘; 

Multiplying the above inequalities we get |
𝑎𝑛

𝑎𝑛
| > 𝑘𝑛−𝑚. 

 ∴ |
𝑎𝑛
𝑎𝑛
| < 𝑘𝑚 (

1

𝑘
)
𝑛

.

 ∴ |𝑎𝑛| < 𝑘
𝑚|𝑎𝑚| (

1

𝑘
)
𝑛

 ∴ |𝑎𝑛| < 𝐴𝑟
𝑛 where 𝐴 = |𝑎𝑚|𝑘

𝑚 is a constant and 𝑟 = 1/𝑘.

 Now 𝑘 > 1 ⇒ 0 < 𝑟 < 1.
 ∴ (𝑟𝑛) → 0 (by solved problem 7 of 1.1 ) 

 ∴ (𝑎𝑛) → 0.

 

Note:  

The above theorem is true even if 𝐼 = 𝑥, 

Theorem 5:  

Let (𝑎∗) be any sequence of positive terms and lim
𝑥→+

  (
𝑎𝑛

𝑎𝑛+1
) = 𝑙. If 𝑙 < 1 then (𝑎𝑛) → 𝑥. 

Proof: 

Proof is similar to that of theorem 4. 

Theorem 6:  

If the sequences (𝑎𝑛) and (𝑏𝑛) converge to 0 and (𝑏𝑛)i  strictly monotonic decreasing then 

lim
𝑛→∞

  (
𝑎𝑛

𝑏𝑛
) = lim

𝑛→∞
  (
𝑎𝑛−𝑎𝑛+1

𝑏𝑛−𝑏𝑛+1
) provided the limit on the right hand side exists whether finite or 

infinite. 

Proof: 

Case (i) Let lim
𝑛→∞

  (
𝑎𝑛−𝑎𝑛+1

𝑏𝑛−𝑏𝑛+1
) = 𝑙, finite. 

Let 𝜀 > 0 be given. Then there exists 𝑚 ∈  N such that 
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𝑙 − 𝜀 <
𝑎𝑛 − 𝑎𝑛+1
𝑏𝑛 − 𝑏𝑛+1

< 𝑙 + 𝜀 for all 𝑛 ≥ 𝑚. 

Since 𝑏𝑛 − 𝑏𝑛+1 > 0, we get 

(𝑏𝑛 − 𝑏𝑛+1)(𝑙 − 𝜀) < 𝑎𝑛 − 𝑎𝑛+1 < (𝑏𝑛 − 𝑏𝑛+1)(𝑙 + 𝜀) for all 𝑛 ≥ 𝑚. 

Let 𝑛 > 𝑝 ≥ 𝑚. 

Then (𝑏𝑝 − 𝑏𝑝+1)(𝑙 − 𝜀) < 𝑎𝑝 − 𝑎𝑝+1 < (𝑏𝑝 − 𝑏𝑝+1)(𝑙 + 𝜀) 

(𝑏𝑝+1 − 𝑏𝑝+2)(𝑙 − 𝜀) < 𝑎𝑝+1 − 𝑎𝑝+2 < (𝑏𝑝+1 − 𝑏𝑝+2)(𝑙 + 𝜀) 

 (𝑏𝑛−1 − 𝑏𝑛)(𝑙 − 𝜀) < 𝑎𝑛−1 − 𝑎𝑛 < (𝑏𝑛−1 − 𝑏𝑛)(𝑙 + 𝜀) 

Adding the above inequalities, we get 

(𝑏𝑝 − 𝑏𝑛)(𝑙 − 𝜀) < 𝑎𝑝 − 𝑎𝑛 < (𝑏𝑝 − 𝑏𝑛)(𝑙 + 𝜀) 

Taking limit as 𝑛 → ∞, we get 

 𝑏𝑝(𝑙 − 𝜀) < 𝑎𝑝 < 𝑏𝑝(𝑙 + 𝜀)( since (𝑎𝑛), (𝑏𝑛) → 0)

 ∴  𝑙 − 𝜀 <
𝑎𝑝
𝑏𝑝
< 𝑙 + 𝜀 ( since 𝑏𝑝 > 0)

 ∴ |
𝑎𝑝
𝑏𝑝
− 𝑙| < 𝜀 for all 𝑝 ≥ 𝑚.

 ∴ lim
𝑛→−∞

 
𝑎𝑛
𝑏𝑛
= 𝑙.

 

Case (ii) lim𝑛→∞   (
𝑎𝑛−𝑎𝑛+1

𝑏𝑛−𝑏𝑛+1
) = 𝑥. 

Let 𝑘 > 0 be any real number.  

Then there exists 𝑚 ∈  N such that 
𝑎𝑐−𝑎𝑛+1

𝑏𝑛−𝑏𝑛+1
> 𝑘 for all 𝑛 ≥ 𝑚. 

 ∴ 𝑎𝑛 − 𝑎𝑛+1 > (𝑏𝑛 − 𝑏𝑛+1)𝑘 for all 𝑛 ≥ 𝑚.

 Let 𝑛 > 𝑝 ≥ 𝑚.
 

Writing the inequalities for 𝑛 = 𝑝, 𝑝 + 1,…… , 𝑛 and adding we get 

𝑎𝑝 − 𝑎𝑛 > 𝑘(𝑏𝑝 − 𝑏𝑛). 

Taking limit as 𝑛 → ∞, we get 𝑎𝑝 ≥ 𝑘𝑏𝑝 
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 ∴
𝑎𝑝
𝑏𝑝
≥ 𝑘 for all 𝑝 ≥ 𝑚.

 ∴ (
𝑎𝑛
𝑏𝑛
)  diverges to 𝑥

 

Problem 1:  

Show that lim
𝑛→∞

 
1

𝑛
(1 +

1

2
+⋯… . . +

1

𝑛
) = 0. 

Solution: 

Let 𝑎𝑛 =
1

𝑛
. 

We know that (𝑎𝑛) → 0. Hence by Cauchy's first limit theorem 

 we get (
𝑎1 + 𝑎2 +⋯… . . +𝑎𝑛

𝑛
) → 0 

∴ (
1

𝑛
(1 +

1

2
+⋯ . . +

1

𝑛
)) → 0 

Problem 2: 

Show that lim𝑛1/𝑛 = 1. 

Solution: 

Let 𝑎𝑛 = 𝑛. 

∴ lim
𝑥→−

 
𝑎𝑛+1
𝑎𝑛

= lim
𝑛→−

  (
𝑛 + 1

𝑛
) 

= lim
𝑛→∞

  (1 +
1

𝑛
) = 1 

∴ By Cauchy's second limit theorem, we get lim
𝑛→∞

 𝑛1/𝑛 = 1 

Problem 3:  

Prove that 
1

𝑛
[(𝑛 + 1)′(𝑛 + 2)… . . (𝑛 + 𝑛)]1/𝑛 → 4/𝑒. 

Solution: 
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Let 𝑎𝑛 =
1

𝑛
[(𝑛 + 1)(𝑛 + 2)… . . (𝑛 + 𝑛)]1/𝑛 

 = [
(𝑛 + 1)(𝑛 + 2)… . . (𝑛 + 𝑛)

𝑛𝑛
]
1/𝑛

 = [(1 +
1

𝑛
) (1 +

2

𝑛
)……(1 +

𝑛

𝑛
)]
1/𝑛

 

Let 𝑏𝑛 = (1 +
1

𝑛
) (1 +

2

𝑛
)… . . (1 +

𝑛

𝑛
) so that 𝑎𝑛 = 𝑏𝑛

1/𝑛
. 

Now, 
𝑏𝑛+1

𝑏𝑛
=

(1+
1

𝑛++1
)(1+

2

𝑛+1
)…(1+

𝑛+1

𝑛+1
)

(1+
1

𝑛
)(1+

2

𝑛
)………(1+

𝑛

𝑛
)

. 

= (2𝑛 + 1)(2𝑛 + 2)
𝑛𝑛

(𝑛 + 1)𝑛+2
 

=
2(2𝑛 + 1)

𝑛 + 1

𝑛𝑛

(𝑛 + 1)𝑛
 

= 2(
2 + 1/𝑛

1 + 1/𝑛
)

1

(1 + 1/𝑛)𝑛
 

∴ (
𝑏𝑛+1
𝑏𝑛

) →
4

𝑒
 

∴  By theorem 3.24 we get (𝑏𝑛
1/𝑛) → 4/𝑒. 

∴ (𝑎∗) → 4/𝑒. 

Problem 4: 

Prove that lim𝑥→−∞  
𝑥𝑛

𝑛!
= 0. 

Solution: 

Let 𝑣𝑠 =
𝑥𝑛

𝑛!
. 

 ∴
𝑎∗
𝑎v +

=
𝑥𝑛

𝑛!

(𝑛 + 1)!

𝑥𝑛+1
=
𝑛 + 1

𝑥
.

 ∴ lim
𝑛→∞

  |
𝑎𝑛
𝑎𝑛+1

| = ∞
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∴ (𝑎t) → 0 ( by theorem 4) 

Problem 5: 

Show that lim
𝑛→∞

 
𝑛!

𝑛𝑛
= 0. 

Solution:  

Let 𝑎𝑛 =
𝑛!

𝑛𝑛
. 

∴ |
𝑎𝑛
𝑎𝑛+1

| =
𝑛!

𝑛𝑛
(𝑛 + 1)𝑛+1

(𝑛 + 1)!

 = (
𝑛 + 1

𝑛
)
𝑛

= (1 +
1

𝑛
)
𝑛

∴ lim
𝑛→∞

  |
𝑎𝑛
𝑎𝑛+1

| = lim
𝑛→∞

  (1 +
1

𝑛
)
𝑛

 = 𝑒 ( by problem 3 of 2.1.) 

 > 1.

 

∴ (𝑎𝑛) → 0. (by theorem 4) 

 

Exercises: 

1. Evaluate the limits of the following sequences whose 𝑛𝑡1terml/5
a , given below. 

(a) 
1

𝑛
(1 + 21/2 + 31/3 +⋯ . .+𝑛1/𝑛)  (b) 

1

𝑛
(1 + 2 + 32/3 +⋯…+ 𝑛2/𝑛) 

(c) 
1

𝑛
(1 +

1

3
+

1

5
+⋯ . .+

1

2𝑛−1
)    (d) 𝑛𝑛

2   (e) (
(2𝑛)!

(𝑛!)2
)
1/𝑛

  (f) (1 +
1

𝑛
)
𝑛+1

 

(g) (1 + 1/𝑛)𝑛+5   (h) 
(𝑛!)1/𝑛

𝑛
    (i) 

[(𝑎+1)(𝑎+2)…..(𝑎+𝑛)]1/𝑛

𝑛
 where 𝑎 is a fixed positite 

real number. 

2. Prove lim
𝑛→𝑛

  [
2

1
(
3

2
)
2

(
4

3
)
3

⋯(
𝑛+1

𝑛
)
𝑛

]
1/𝑛

= 𝑒. 

3. Prove that lim
𝑛→=

 
𝑛

(𝑛!)1/𝑛
= 𝑒. 

4. Prove that lim
𝑛→∞

  (1 +
1

𝑛−1
)
𝑛

= 𝑒. 
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5. Prove that lim
𝑥→∞

  (1 −
1

𝑛
)
−𝑛

= 𝑒. 

6. Prove that lim
𝑛→=

 
1⋅3⋅5………(2𝑛−1)

2⋅4………….2𝑛
= 0. 

7. Show that lim
𝑛→∞

 
𝑛5

2𝑛
= 0. 

2.3. Sub sequences: 

Let (𝑎n) be a sequence. Let (𝑛k) be a strictly increasing sequence of natural numbers. Then 

(𝑎𝑛k) is called a subsequence of (𝑎n). 

Note: 

The terms of a subsequence occur in the same order in which they occur in the original 

sequence. 

Examples: 

1. (𝑎2𝑛) is a  subsequence of any sequence ((𝑎n). Note that in this example the interval 

between any two terms of the subsequence is the same,  

(i.e.,) 𝑛1 = 2, 𝑛2 = 4, 𝑛3 = 6,……… 𝑛𝑘 = 2𝑘. 

2. (𝑎𝑛2) is a subsequence of any sequence (𝑎n) . Hence 𝑎𝑛1 = 𝑎1, 𝑎𝑛2 = 𝑎4, 𝑎𝑛3 = 𝑎9, 

……….. Here the interval between two successive terms of the subsequence goes on 

increasing as k become large. Thus the interval between various terms of a subsequence need 

not be regular. 

3. Any sequence (𝑎𝑛) is a subsequence of itself. 

4. Consider the sequence (𝑎𝑛) given by 1, 0, 1, 0,…….. Now, (𝑏𝑛) given by 1,1,1,…. Is a 

subsequence of (𝑎𝑛).  Here (𝑎𝑛) is not convergent whereas the subsequence (𝑏𝑛) converges 

to 1. Thus a subsequence of non-convergent sequence can be a convergent sequence. 

Note:  A subsequence of a given subsequence (𝑎𝑛k) of a sequence (𝑎𝑛) is again a 

subsequence of (𝑎𝑛). 
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Theorem 1: 

If a subsequence (𝑎𝑛) converges to 𝑙, then every subsequence (𝑎𝑛k) of (𝑎𝑛) also converges 

to 𝑙. 

Proof: 

Let 𝜀 > 0 be given . 

Since (𝑎𝑛) → 𝑙 there exists m∈  N such that  

|𝑎𝑛 − 𝑙| < 𝜀 for all 𝑛 ≥ 𝑚.      ………….(1) 

Now choose 𝑛𝑘 ≥ 𝑚 

Then  k≥  𝑘0 ⇒  𝑛𝑘 ≥ 𝑛𝑘0 

⇒  𝑛𝑘 ≥ m. 

⇒ |𝑎𝑛k − 𝑙| < 𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙  k≥  𝑘0. 

∴ (𝑎𝑛k) → 𝑙. 

Note: 

1. If a subsequence of a sequence convergence, then the original sequence need not 

converge. (refer example 4) 

2. If a sequence (𝑎𝑛) has two subseuences converging to two limits, then (𝑎𝑛) does not 

converge. For example, consider the sequence (𝑎𝑛) given by  

      𝑎𝑛 = {
1/n  if 𝑛 is even 

1 +
1

𝑛
 if 𝑛 is odd 

. 

Here the subsequence (𝑎2𝑛) → 0 and the subsequence (𝑎2𝑛−1) → 1. Hence the given 

sequence ( 𝑎𝑛 ) does not converge.  
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Theorem 2:  

If the sub sequences (𝑎2𝑛−1) and (𝑎2n) of a sequence (𝑎𝑛) converge to the same limit 𝑙 then 

(𝑎𝑛) also converges to 𝑙. 

Proof: 

Let 𝜀 > 0 be given. Since (𝑎2𝑛−1) → 𝑙 there exists 𝑛1 ∈  N such that |𝑎2𝑛−1 − 𝑙| < 𝜀 for all 

2𝑛 − 1 ≥ 𝑛1. 

Similarly there exists 𝑛2 ∈  N such that |𝑎2𝑛 − 𝑙| < 𝜀 for all 2𝑛 ≥ 𝑛1. 

 Let 𝑚 = max{𝑛1, 𝑛2}. 

Clearly |𝑎𝑛 − 𝑙| < 𝜀 for all 𝑛 ≥ 𝑚. 

∴ (𝑎𝑛) → 𝑙. 

Note: 

The above result is true even if we have 𝑙 = ∞ or −∞. 

Definition: 

Let (𝑎𝑛) be a sequence. A natural number 𝑚 is called a peak point of the sequence (𝑎𝑛) if 

𝑎𝑛 < 𝑎𝑚 for all 𝑛 > 𝑚. 

Example: 

1. For the sequence (1/𝑛), every natural number is a peak point and hence the sequence 

has infinite number of peak points. In general, for a strictly monotonic decreasing 

sequence every natural number is a peak point. 

2. Consider the sequence 1,
1

2
,
1

3
, −1,−1, …….. Here 1,2,3 are the peak points of the 

sequence. 

3. The sequence 1,2,3,…… has no peak point. In general, a monotonic increasing 

sequence bas no peak point. 

Theorem 3: 

Every sequence ( 𝑎𝑛 ) has a monotonic subsequence. 

Proof: 
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 Case ( 𝑖): 

(𝑎𝑛) has infinite number of peak points. 

Let the peak points be 𝑛1 < 𝑛2 < ⋯ . .< 𝑛𝑘 < ⋯ . ... 

Then 𝑎𝑛1 > 𝑎𝑛2 > ⋯ . . > 𝑎𝑛4 > ⋯.. 

∴ (𝑎𝑛) is a monotonic decreasing subsequence of (𝑎𝑛). 

Case (ii): 

( 𝑎𝑛 ) has only a finite number of peak points or no peak poin,  

Choose a natural number 𝑛1 such that there is no peak point grom point of (𝑎𝑛), there exists 

𝑛2 > 𝑛1 such that 𝑎𝑛2 ≥ 𝑎𝑛1. Again since 𝑛2 is not a peak point, there exists  𝑛3 > 𝑛2 such 

that 𝑎𝑛3 ≥ 𝑎𝑛2. Repeating this process we get a monotonic incteatis, subscquenc (𝑎𝑛𝑘) of 

(𝑎𝑛). 

Theorem 4:  

Every bounded sequence has a convergent subsequence. 

Proof:  

Let ( 𝑎𝑛 ) be a bounded sequence. Let (𝑎𝑛𝑛) be a monotonie subseque  qus  of (𝑎𝑛).  

Since (𝑎𝑛) is bounded (𝑎𝑛) is also bounded: 

∴ (𝑎𝑛𝑘) is a bounded monotonic sequence and hence convergent, 

∴ (𝑎𝑛𝑘) is a convergent subsequence of (𝑎𝑛). 

Exercises: 

1. Prove that if a sequence ( 𝑎𝑎 ) diverges to ∞ then every subsequertes of ( 𝑎𝑛 ) also 

diverges to ∞. 

2. Prove that if a sequence (𝑎𝑛) diverges to −∞ then every subsequence of (𝑎𝑛) also 

diverges to −∞. 

3. Give examples of  

(i) a sequence which does not diverge to ∞ bal has a subsequence diverging to ∞ (ii) 

a sequence which does not diverge to −∞ but has a subsequence diverging to −∞. 
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(iii) a sequence (𝑎𝑛) bavith two subsequences, one diverging to ∞ and the other 

diverging −∞, 

4. Prove, that each of the following sequences is not convergent by exhibiting two sub 

sequences converging to two different limits. 

(i) 1,
1

2
1,
1

3
, 1,

1

4
, …… . . ,1,

1

𝑛
, ……. 

(ii) 1,2,1,3,1,4,…… 

(iii) ((−1)𝑛). 

2.4. Limit Points: 

Definition:  

Let (𝑎𝑛) be a sequence of real numbers 𝑎 is called a limit point or a cluster point of the 

sequence (𝑎𝑛) if given 𝜀 > 0, there exists infinite number of terms of the sequence in (𝑎 −

𝜀, 𝑎 + 𝜀). If the sequene (𝑎𝑛) is not bounded above then 𝑥 is a limit point of the sequence. If 

(𝑎𝑛) is not bounded below then −∞ is a limit point of the sequence. 

Examples: 

1. Consider the sequence 1,0,1,0,…. . For this sequence 1 is a limit point since given 𝜀 >

0, the interval (1 − 𝜀, 1 + 𝜀) contains infinitely many terms 𝑎1, 𝑎3, 𝑎5, ….. of this 

sequence. Similarly, 0 is also a limit point of this sequence. 

2. If a sequence (𝑎𝑛) converges to 𝑙 then 𝑙 is a point of the sequence. For, given 𝜀 > 0, 

there cxists 𝑚 ∈ 𝑁 such that 𝑎𝑛 ∈ (𝑙 − 𝜀, 𝑙 + 𝜀) for all 𝑛 ≥ 𝑚. 

∴ (𝑙 − 𝜀, 𝑙 + 𝜀) contains infinitcly many terms of the sequence. 

3. The sequence (𝑎𝑛) = 1,2,3,… . 𝑛 … is not bounded above and hence ∞ is a limit 

point. 

4. The sequence (𝑎𝑛) = 1,−1,2,−2, ……𝑛, −𝑛…… is neither bounded above nor 

bounded below. Hence ∞ and −∞ are limit points of the 
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Theorem 1: 

Let (𝑎𝑛) be a sequence. A real number 𝑎 is a limit point of (𝑎𝑛) iff there exists a 

subsequence (𝑎𝑛𝑘)  of (𝑎𝑛) converging to 𝑎. 

Proof:  

Suppose there exists a subsequence (𝑎𝑛k) of (𝑎𝑛) converging to 𝑎. 

Let 𝜀 > 0 be given. Then there cxists 𝑘0 ∈ 𝑁 such that 𝑎𝑛 ∈ (𝑎 − 𝜀, 𝑎 + 𝜀) for all 𝑘 ≥ 𝑘0. 

∴ (𝑎 − 𝜀, 𝑎 + 𝜀) contains infinitely many terms of the sequence (𝑎𝑛). 

∴ 𝑎 is a limit point of the sequence (𝑎𝑛). 

Conversely suppose a is a limit point of (𝑎𝑛). 

Then for each 𝜀 > 0 the interval (𝑎 − 𝜀, 𝑎 + 𝜀) contaits infinitely many terms of the 

sequence. 

 In particular we can find 𝑛1 ∈  N such that (𝑎𝑛𝑘)  ∈ (𝑎 − 1, 𝑎 + 1). 

Also we can find 𝑛2 > 𝑛1 such that 𝑎𝑛2 ∈ (𝑎 −
1

2
, 𝑎 +

1

2
). 

Proceeding like this we can find natural numbers 𝑛1 < 𝑛2 < 𝑛3……. . such that  

 𝑎𝑛k ∈ (𝑎 − 1/𝑘, 𝑎 + 1/𝑘). 

Clearly (𝑎𝑛) is a subsequence of (𝑎𝑛) and |𝑎𝑛k − 𝑎| < 1/𝑘 

For any 𝜀 > 0, |𝑎𝑛k − 𝑎| < 𝜀 if 𝑘 > 1/𝜀. 

∴ (𝑎𝑛k) → 𝑎. 

Theorem 2: 

Every bounded sequence has at least one limit point.  

Proof:  

Let (𝑎𝑛) be a bounded sequence. Then there exists a convergent subsequence ( 𝑎𝑛k ) of  

( 𝑎𝑛 ) converging to 𝑙 (say) (by theorem 2 of 1.2). 
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Hence 𝑙 is a limit point of (𝑎𝑛). 

Note: 

In general every sequence (𝑎𝑛) has at least one limit point (finite or intinitc). 

Theorem 3: 

A sequence (𝑎𝑛) converges to 𝑙 iff (𝑎𝑛) is bounded and 𝑙 is the only limit point of the 

sequence. 

Proof: 

Let (𝑎𝑛) → 𝑙. Then (𝑎𝑛) is bounded (by theorem 2 of 1.2 ). 

Also 𝑙 is a limit point of the sequence (𝑎𝑛) (by example 2 of 2.4 ). 

Now suppose 𝑙1 is any other limit point of (𝑎𝑛). Then there exist a subsequence (𝑎𝑛k) of 

(𝑎𝑛) such that (𝑎𝑛) → 𝑙1. 

Conversely,  suppose 𝑙 is the only limit point of (𝑎𝑛). Suppose (𝑎𝑛) does not converge to 𝑙.  

Then there exists at least one 𝜀 > 0 such that infinitely many terms of the sequence lie 

outside (𝑙 − 𝜀, 𝑙 + 𝜀).  Hence we can find a subsequence (𝑎𝑛k) of (𝑎𝑛)  

such that 𝑎𝑛k ∉ (𝑙 − 𝜀, 𝑙 + 𝜀) for all k. 

Since (𝑎𝑛) is a bounded sequence, (𝑎𝑛k) is also a bounded sequence. Hence (𝑎𝑛k) has also a 

limit point by theorem 2, say, 𝑙′ and  𝑙′ ≠ 𝑙. 

∴ (𝑎𝑛) has two limit points 𝑙 𝑎𝑛𝑑 𝑙 which is a contradiction. Hence  (𝑎𝑛) → 𝑙. 

Exercises: 

1. Find all the limit points of each of the following sequences. 

i)(1/n)    ii) (n2)    iii) ((-1)n)    iv) (2n-1) 

      2. Construct a sequence having exactly 10 limit points. 
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2.5. Cauchy Sequences: 

In this section we prove a necessary and sufficient condition for given sequence to be 

convergent. This criterion involves only the terms of sequence under consideration and hence 

can be used to test the converge of a sequence without having any idea of its limit. 

Definition: 

 A sequence (𝑎𝑛) is said to be a Cauchy sequence if given 𝜀 > 0, there exists 𝑛0 ∈ 𝑁 such 

that |𝑎𝑛 − 𝑎𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑛0. 

Note: 

 In the above definition the condition |𝑎𝑛 − 𝑎𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑛0 can be written in the 

following equivalent form, naze |𝑎𝑛+𝑝 − 𝑎𝑛| < 𝜀 for all 𝑛 ≥ 𝑛0 and for all positive integers 

𝑝. 

Example 1: 

The sequence (1/𝑛) is a Cauchy sequence. 

Proof: 

Let (𝑎𝑛) = (1/𝑛). Let 𝜀 > 0 be given. 

Now, |𝑎𝑛 − 𝑎𝑚| = |
1

𝑛
−

1

𝑚
|. 

∴ If we choose 𝑛0 to be any positive integer greater than 
1

𝜀
 , 

we get |𝑎𝑛 − 𝑎𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑛0. 

∴ (1/𝑛) is a Cauchy sequence. 

Example 2: 

The sequence ((−1)𝑛) is not a Cauchy sequence. 

Proof: 

Let (𝑎𝑛) = ((−1)
𝑛). 

∴ |𝑎𝑛 − 𝑎𝑛+1| = 2 

∴ If 𝜀 < 2, we cannot find 𝑛0 such that |𝑎𝑛 − 𝑎𝑛+1| < 𝜀 for all 𝑛 ≥ 𝑛0. 

 ∴ ((−1)𝑛) is not a Cauchy sequence. 

Example 3: 

( 𝑛 ) is not a Cauchy sequence. 

Proof: 
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 Let (𝑎𝑛) = (𝑛). 

∴ |𝑎𝑛 − 𝑎𝑚| ≥ 1 if 𝑛 ≠ 𝑚. 

∴ If we choose 𝜀 < 1,  

we cannot find 𝑛0 such that |𝑎𝑛 − 𝑎𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑛0. 

∴ (𝑛) is not a Cauchy sequence. 

Theorem 1:  

Any convergent sequence is a Cauchy sequence. 

Proof: 

Let (𝑎𝑛) → 𝑙. Then given 𝜀 > 0, there exists �̇�0 ∈ N  

such that |𝑎𝑛 − 𝑙| <
1

2
𝜀 for all 𝑛 ≥ 𝑛0. 

∴ |𝑎𝑛 − 𝑎𝑚|= |𝑎𝑛 − 𝑙 + 𝑙 − 𝑎𝑚|

≤ |𝑎𝑛 − 𝑙| + |𝑙 − 𝑎𝑚|

<
1

2
𝜀 +

1

2
𝜀 = 𝜀 for all 𝑛,𝑚 ≥ 𝑛0.

 

∴ (𝑎𝑛) is a Cauchy sequence. 

Theorem 2: 

Any Cauchy sequence is a bounded sequence. 

Proof: 

Let ( 𝑎𝑛 ) be a Cauchy sequence. 

Let 𝜀 > 0 be given. Then there exists 𝑛0 ∈ 𝑁  

such that |𝑎𝑛 − 𝑎𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑛0. 

∴ |𝑎𝑛| < |𝑎𝑛0| + 𝜀 for 𝑛 ≥ 𝑛0. 

Now, let 𝑘 = max{|𝑎1|, |𝑎2|, … . . , |𝑎𝑛𝑒| + 𝜀}. 

Then |𝑎𝑛| ≤ 𝑘 for all 𝑛. Hence (𝑎𝑛) is a bounded sequence. 

Theorem 3: 

Lel(𝑎𝑛) be a Cauchy seguence. If (𝑎𝑛) has a subsequence (𝑎𝑛k) converging to 𝑙, then 

(𝑎𝑛) → 1. 

Proof: 

Let 𝜀 > 0 be given. Then there exists 𝑛0 ∈ 𝑁 such that 

 |𝑎𝑛 − 𝑎𝑚| <
1

2
𝜀 for all 𝑛,𝑚 ≥ 𝑛0  ……… . (1) 

Also since (𝑎𝑛k) → 𝑙 , there exists 𝑘0 ∈ N  
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such that |𝑎𝑛1 − 𝑙| <
1

2
𝜀 for all 𝑘 ≥ 𝑘0 ……….(2) 

Choose 𝑛𝑘 such that 𝑛𝑘 ≥ 𝑛𝑘  and 𝑛0. 

Then |𝑎𝑛 − 𝑙 | = |𝑎𝑛 − 𝑎𝑛k + 𝑎𝑛k − 𝑙| 

≤ |𝑎𝑛 − 𝑎𝑛k| + |𝑎𝑛k − 𝑙|

<
1

2
𝜀 +

1

2
𝜀 = 𝜀 for all 𝑛 ≥ 𝑛0.

 

Hence (𝑎𝑛) → 𝑙. 

Note: 

In theorem 1 we proved that any convergent sequence is a Cauchy sequence. We now proceed 

to prove that the converse of the above theorem is also true. That is, any Cauchy sequence in 

𝑅 is convergent. This is known as the Canchy's general principle of convergence and this 

property of the real number system is known as the completeness of 𝑅 and we say that 𝑅 is 

complete. 

Theorem 4: (Cauchy's general principle of convergence)  

A sequence (𝑎𝑛) in 𝐑 is convergent iff it is a Cauchy sequence. 

Proof:  

In theorem 1 we have proved that any convergent sequence is a Cauchy sequence. 

Conversely, let (𝑎𝑛) be a Cauchy sequence in 𝐑. 

∴ (𝑎𝑛) is a bounded sequence (by theorem 2). 

∴ There exists a subsequence (𝑎𝑛) of (𝑎𝑛) such that (𝑎𝑛) → 𝑙 

∴ (𝑎𝑛) → 𝑙 (by theorem 3). 

Note: 

There are Cauchy sequences in Q which are not convergent in Q . For example, the 

sequence1 ,1.4, 1.41, 1.414… ,….... whose terms are successive decimal expressions of √2 is 

a Cauchy sequence in 𝑄 which is not convergent in Q . 

Exercises: 

1. Show that the following are Cauchy sequences. 

(a) (
1

𝑛2
)                 (b) (1 +

1

𝑛
) 

(c) (
(−1)𝑛

𝑛
)             (d) (

1

𝑛!
) 

2. Show that the following are not Cauchy sequences. 

(a) ((−1)𝑛 +
1

𝑛
)      (b) ((−1)𝑛𝑛)  (c) (𝑛2) 
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Unit III 

Series of positive terms: Infinite series – Comparison test.  

Chapter 3: Sections 3.1, 3.2 

 

Series of Positive Terms: 

3.1. Infinite Series: 

Definition:  

Let (𝑎𝑛) = 𝑎1, 𝑎2, … . . . , 𝑎𝑛 , ….. be a sequence of real number. Then the formal expression 𝑎1 +

𝑎2 +⋯ .+𝑎𝑛 +⋯.. is called an infinite series of real numbers and is denoted by ∑1
∞  𝑎𝑛 or ∑𝑎𝑛. 

 Let 𝑠1 = 𝑎1; 𝑠2 = 𝑎1 + 𝑎2; 𝑠3 = 𝑎1 + 𝑎2 + 𝑎3;

𝑠𝑛 = 𝑎1 + 𝑎2 +⋯ . . +𝑎𝑛 .
 

Then (𝑠𝑛) is called the sequence of partial sums of the given series Σ𝑎𝑛 

The series Σ𝑎𝑛 is said to converge, diverge or oscillate accos as the sequence of partial sums 

(𝑠𝑛) converges, diverges or oscillates. 

If (𝑠𝑛) → 𝑠, we say that the series Σ𝑎𝑛 converges to the sum s. 

We note that the behaviour of a series does not change if a fil number of terms are added or 

altered. 

Example 1: 

Consider the series 1 + 1 + 1 + 1 +⋯……  

Here 𝑠𝑛 = 𝑛. Clearly the sequence (𝑠𝑛) diverges to ∞. Hence the given series   

diverges to ∞. 

Example 2: 

 Consider the geometric series 1 + 𝑟 + 𝑟2 + +𝑟𝑛 + 

  Here, 𝑠𝑛 = 1 + 𝑟 + 𝑟
2 +⋯ .+𝑟𝑛−1 =

1−𝑟𝑛

1−𝑟
.  

Case (i) 0 ≤ 𝑟 < 1.  

Then (𝑟𝑛) → 0 (refer problem 7 of 1.7) 

     ∴ (𝑠𝑛) →
1

1−𝑟
. 

    ∴ The given series converges to the sum 1/(1 − 𝑟). 

Case (ii) 𝑟 > 1.  

Then 𝑠𝑛 =
𝑟𝑛−1

𝑟−1
. 

Also (𝑟𝑛) → ∞ when 𝑟 > 1. 
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Hence the series diverges to ∞. 

Case (iii) 𝑟 = 1.  

Then the series becomes1 + 1 + ⋯. 

∴ (𝑠𝑛) = (𝑛) which diverges to ∞. 

Case (iv) 𝑟 = −1. 

Then the series becomes 1 − 1 + 1 − 1 + ⋯.. . 

∴ 𝑠𝑛 = {
0 if 𝑛 is even 

1 if 𝑛 is odd 
. 

∴ (𝑠𝑛) oscillates finitely. 

Hence the given series oscillates finitely. 

Case (v) 𝑟 < −1. 

∴ (𝑟𝑛) oscillates infinitely (by problem 7 of 1.7). 

∴ (𝑠𝑛) oscillates infinitely. 

Hence the given series oscillates infinitely. 

Example 3: 

Consider the series 1 +
1

1!
+

1

2!
+⋯… . . +

1

𝑛!
+ 

Then 𝑠𝑛 = 1 +
1

1!
+

1

2!
+⋯…+

1

(𝑛−1)!
. 

The sequence (𝑠𝑛) → 𝑒 (refer problem 1 of 2.1). 

∴ The given series converges to the sum 𝑒. 

Example 4: 

 Consider the series 1 +
1

2
+

1

3
+ +

1

𝑛
+ 

Then 𝑠𝑛 = 1 +
1

2
+⋯+

1

𝑛
. 

Here (𝑠𝑛) → ∞ (refer solved problem 5 of 2.1). 

∴ The given series diverges to ∞. 

Note 1: 

 Let ∑𝑎𝑛  be a series of positive terms. Then (𝑠𝑛) is a monotonic increasing sequence. Hence 

(𝑠𝑛) converges or diverges to ∞ according as (𝑠𝑛) is bounded or unbounded. Hence the series 

Σ𝑎𝑛 converges or diverges to ∞. Thus a series of positive terms cannot oscillate 

Note 2: 

 Let ∑𝑎𝑛 be a convergent series of positive terms converging to the sum 𝑠. Then 𝑠 is the l.u.b 

of (𝑠𝑛). Hence 𝑠𝑛 ≤ 𝑠 for all 𝑛. 
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Also given 𝜀 > 0 there exists 𝑚 ∈ 𝑁 such that 𝑠 − 𝜀 < 𝑠𝑛 

Hence 𝑠 − 𝜀 < 𝑠𝑛 ≤ 𝑠 for all 𝑛 ≥ 𝑚. 

Theorem 1: 

Let Σ𝑎𝑛 be a convergent series converging to the sum 𝑠. Then lim
𝑛→∞

 𝑎𝑛 = 0. 

Proof: 

  

lim
𝑛→∞

 𝑎𝑛= lim
𝑛→∞

 (𝑠𝑛 − 𝑠𝑛−1)

= lim
𝑛→∞

 𝑠𝑛 − lim
𝑛→∞

 𝑠𝑛−1.

= 𝑠 − 𝑠 = 0

 

Note 1: 

The converse of the above theorem is not true.  

(i.e.) If lim𝑎𝑛 = 0, then ∑𝑎𝑛 need not converge, For example, consider the series ∑
1

𝑛
.Here 

lim
𝑛→∞

 
1

𝑛
= 0. However the series ∑

1

𝑛
 diverges. (By example 4 of 3.1 ) 

Note 2: 

 If lim𝑎𝑛 ≠ 0 then the series ∑𝑎𝑛 is not convergent. If further ∑𝑎𝑛 is a series of positive 

terms then the series cannot oscillate and hence the series diverges. 

Theorem 2: 

Let Σ𝑎𝑛 converge to 𝑎 and Σ𝑏𝑛 converge to 𝑏. Then Σ(𝑎𝑛 ± 𝑏𝑛) converges to 𝑎 ± 𝑏 and 

Σ𝑘𝑎𝑛 converges to 𝑘𝑎. 

Proof: 

Let 𝑠𝑛 = 𝑎1 + 𝑎2 +⋯ . . +𝑎𝑛 and 

𝑡𝑛 = 𝑏1 + 𝑏2 +⋯ . . +𝑏𝑛. 

Then (𝑠𝑛) → 𝑎 and (𝑡𝑛) → 𝑏. 

∴ (𝑠𝑛 ± 𝑡𝑛) → 𝑎 ± 𝑏 (refer theorem 3.8) 

Also (𝑠𝑛 ± 𝑡𝑛) is the sequence of partial sums of Σ(𝑎𝑛 ± 𝑏𝑛). 

∴ Σ(𝑎𝑛 ± 𝑏𝑛) converges to 𝑎 ± 𝑏. 

Similarly ∑𝑘𝑎𝑛 converges to 𝑘𝑎. 

Theorem 3: (Cauchy's general principle of convergence) 

The series Σ𝑎𝑛 is convergent iff given 𝜀 > 0 there exists 𝑛0 ∈ 𝐍 II such that |𝑎𝑛+1 + 𝑎𝑛+2 +

⋯… .+𝑎𝑛+𝑝| < 𝜀 for all 𝑛 ≥ 𝑛0 and for all positive integers 𝑝. 

Proof: 
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 Let ∑𝑎𝑛 be a convergent series. 

Let 𝑠𝑛 = 𝑎1 +⋯… .+𝑎𝑛. 

∴ (𝑠𝑛) is a convergent sequence. 

∴ (𝑠𝑛) is Cauchy sequence (by theorem 1 of 3.1 ). 

∴ There exists 𝑛0 ∈ N such that |𝑠𝑛+𝑝−𝑠𝑛| < 𝜀 for all 𝑛 ≥ 𝑛0 and for all 𝑝 ∈ 𝐍. 

∴ |𝑎𝑛+1 + 𝑎𝑛+2 +⋯…+ 𝑎𝑛+p| < 𝜀 for all 𝑛 ≥ 𝑛0 and for all 𝑝 ∈ 𝑁. 

Conversely if |𝑎𝑛+1 + 𝑎𝑛+2 +⋯ . . . +𝑎𝑛+𝑝| < 𝜀 for an, and for all 𝑝 ∈ N then (𝑠𝑛) is a 

Cauchy sequence in 𝑅 and hence, convergent. (by theorem 4 of 3.1). 

∴ The given series converges. 

Solved Problems. 

Problem 1:  

Apply Cauchy's general principle of convergence to show the series Σ(1/𝑛) is not 

convergent. 

Solution: 

 Let 𝑠𝑛 = 1 +
1

2
+⋯ . . +

1

𝑛
. 

Suppose the series Σ(1/𝑛) is convergent. 

∴ By Cauchy's general principle of convergence, given: there exists 𝑚 ∈ N such that 

|𝑠𝑛+𝑝 − 𝑠𝑛| < 𝜀 for all 𝑛 ≥ 𝑚 and 𝑓0𝑝 ∈ 𝑁. 

∴ |(1 +
1

2
+⋯ . . +

1

𝑛+𝑝
) − (1 +

1

2
+⋯ . . +

1

𝑛
)| < 𝜀 for all 𝑛 ≥ 𝑛0and for all 𝑝 ∈ N. 

∴ |
1

𝑛+1
+

1

𝑛+2
+⋯ .+

1

𝑛+𝑝
| < 𝜀 for all 𝑛 ≥ 𝑚 and for all 𝑝 ∈ 𝐍. 

In particular if we take 𝑛 = 𝑚 and 𝑝 = 𝑚  

we obtain 
1

𝑚+1
+

1

𝑚+2
+⋯ .+

1

𝑚+𝑚
>

1

2𝑚
+⋯+

1

2𝑚
=

1

2
. 

∴
1

2
< 𝜀 which is a contradiction since 𝜀 > 0 is arbitrary. 

∴ The given series is not convergent. 

Problem 2: 

Applying Cauchy's general principle of convergence provel 1 −
1

2
+

1

3
−⋯… .+(−1)𝑛

1

𝑛
+

⋯.. is convergent. 

Solution: 

 Let 𝑠𝑛 = 1 −
1

2
+

1

3
−⋯ . . +

(−1)𝑛

𝑛
. 
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∴ |𝑠𝑛+𝑝 − 𝑠𝑛| = |
1

𝑛 + 1
−

1

𝑛 + 2
+ ⋯…+

(−1)𝑝−1

𝑛 + 𝑝
|

 Now, 
1

𝑛 + 1
−

1

𝑛 + 2
+ ⋯ . . +

(−1)𝑝−1

𝑛 + 𝑝

> 0
= (

1

𝑛 + 1
−

1

𝑛 + 2
) +⋯+

{
 
 

 
 

1

𝑛 + 𝑝 − 1
−

1

𝑛 + 𝑝
 if 𝑝 is even 

1

𝑛 + 1
if 𝑝 is odd 

 

.

 

∴ |𝑠𝑛+𝑝 − 𝑠𝑛|=
1

𝑛 + 1
−

1

𝑛 + 2
+⋯ .+

(−1)𝑝−1

𝑛 + 𝑝

=
1

𝑛 + 1
− (

1

𝑛 + 2
−

1

𝑛 + 3
) −⋯ . . .

<
1

𝑛 + 1

< 𝜀 provided 𝑛 > (
1

𝜀
− 1)

 

∴ By Cauchy's general principle of convergence, the given series is convergent. 

Exercises: 

1. Show that the series ∑(
1

2𝑛
) converges to the sum 1 . 

2. Show that the series 1 + 2 + 3 + diverges to ∞. 

3. Show that if Σ𝑎𝑛 converges and Σ𝑏𝑛 diverges then Σ(𝑎𝑛 + 𝑏𝑛) diverges. 

4. Prove that if Σ𝑐𝑛 is a convergent series of positive terms then so is ∑𝑎𝑛𝑐𝑛 where ( 𝑎𝑛 

) is a bounded sequence of positive terms. 

5. Prove that if Σ𝑑𝑛 is a divergent sequence of positive Iermis the is Σ𝑎𝑛𝑑𝑛 where (𝑎𝑛) 

is a sequence with a positive lower bound. 

6. Show that 
2

5
+

4

52
+

2

53
+

4

54
+

2

55
+

4

56
+⋯ . . . =

7

12
 

(Hint : Express this serics as the sum of two geometric series), 

7. Prove that a sequence (𝑎𝑛) is convergent iff ∑(𝑎𝑛+1 − 𝑎𝑛) in convergent. 

8. Let 𝑎 and 𝑏 be two positive real numbers. Show that the series 𝑎 + 𝑏 + 𝑎2 + 𝑏2 +

𝑎3 + 𝑏3 +⋯ . . ... converges if both 𝑎 and 𝑏 < 1 and dive. ges if either 𝑎 ≥ 1 or 𝑏 ≥

1. 
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3.2. Comparison Test: 

In the next few sections we develop some standard tests for convergence of series of positive 

terms. For the rest of this chapter we confine ourselves to series of positive terms.  

Theorem 1: (Comparison Test) 

(i) Let ∑𝑐𝑛 be a convergent series of positive terms. Let ∑𝑎𝑛 be another series of positive 

terms. If there exists 𝑚 ∈ N such that 𝑎𝑛 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑚 then ∑𝑎𝑛 is also convergent. 

(ii) Let ∑𝑑𝑛 be a divergent series of positive terms Let ∑𝑎𝑛 be another series of positive terms. 

If there exists 𝑚 ∈ N such that 𝑎𝑛 ≥ 𝑑𝑛 for all 𝑛 ≥ 𝑚 then ∑𝑎𝑛 is also divergent. 

Proof: 

 (i) Since the convergence or divergence of a series is not altered by the removal of a finite 

number of terms we may assume without loss of generality that 𝑎𝑛 ≤ 𝑐𝑛. for all 𝑛. 

 Let 𝑆𝑛 = 𝑐1 + 𝑐2 +⋯ . . +𝑐𝑛. and 𝑡𝑛 = 𝑎1 + 𝑎2 +⋯ . . +𝑎𝑛 . 

Since 𝑎𝑛 ≤ 𝑐𝑛 we have 𝑡𝑛 ≤ 𝑠𝑛. 

Now, since ∑𝑐𝑛 is convergent, (𝑠𝑛) is a convergent sequence. 

∴ (𝑠𝑛) is a bounded sequence. (by theorem 2 of sec 1.1 ) 

∴ There exists a real positive number 𝑘 such that 𝑠𝑛 ≤ 𝑘 for all 𝑛. 

∴ 𝑡𝑛 ≤ 𝑘 for all 𝑛 

Hence (𝑡𝑛) is bounded above. 

Also (𝑡𝑛) is a monotonic increasing sequence. 

∴ (𝑡𝑛) converges (by theorem 1 of 2.1). 

∴ ∑𝑎𝑛 converges. 

(ii) Let ∑𝑑𝑛 diverge and 𝑎𝑛 ≥ 𝑑𝑛 for all 𝑛. 

∴ 𝑡𝑛 ≥ 𝑆𝑛 

Now, (𝑠𝑛) diverges to ∞. 

∴ (𝑠𝑛) is not bounded above. 

∴ (𝑡𝑛) is not bounded above. 

Further (𝑡𝑛) is monotonic increasing and hence (𝑡𝑛) diverges to ∞. 

∴ Σ𝑎𝑛 diverges to ∞. 

Theorem 2: 

(i) If Σ𝑐𝑛 converges and if lim𝑛→∞   (
𝑎𝑛

𝑐𝑛
) exists and is finite then Σ𝑎𝑛   also converges. 

(ii) If ∑𝑑𝑛 diverges and if lim𝑛→=   (
𝑎𝑛

𝑑𝑛
) exists and is greater than zero then Σ𝑎𝑛 diverges. 
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Proof: 

(i) Let lim𝑛→∞   (
𝑎𝑛

𝑐𝑛
) = 𝑘. 

Let 𝜀 > 0 be given. Then there exists 𝑛1 ∈ N such that 

𝑎𝑛

𝑐𝑛
< 𝑘 + 𝜀 for all 𝑛 ≥ 𝑛1. 

∴ 𝑎𝑛 < (𝑘 + 𝜀)𝑐𝑛 for all 𝑛 ≥ 𝑛1.  

Also since Σ𝑐𝑛 is a convergent series, Σ(𝑘 + 𝜀)𝑐𝑛 is also a convergent series. 

∴ By comparison test Σ𝑎𝑛 is convergem. 

(ii) Let lim
𝑛→−∞

  (
𝑎𝑛

𝑑𝑛
) = 𝑘 > 0. 

Choose =
1

2
𝑘 : Then there exists 𝑛1 ∈ 𝑁 such that 

𝑘 −
1

2
𝑘 <

𝑎𝑛

𝑑𝑛
< 𝑘 +

1

2
𝑘 for all 𝑛 ≥ 𝑛1. 

∴
𝑎𝑛
𝑑𝑛

>
1

2
𝑘 for all 𝑛 ≥ 𝑛1.

∴ 𝑎𝑛 >
1

2
𝑘𝑑𝑛 for all 𝑛 ≥ 𝑛1.

 

Since Σ𝑑𝑛 is a divergent series, Σ
1

2
𝑘𝑑𝑛 is also divergent series. 

∴ By comparison test, ∑𝑎𝑛 diverges. 

Theorem 3: 

(i) Let ∑𝑐𝑛 be a convergent series of positive terms. Let ∑𝑎𝑛 be another series of positive 

terms. If there exists 𝑚 ∈ 𝑁 such that 
𝑞𝑛+1

𝑎𝑛
≤

𝑐𝑛+1

𝑐𝑛
 for all 𝑛 ≥ 𝑚, then Σ𝑎𝑛 is convergent. 

(ii) Let ∑𝑑𝑛 be a divergent series of positive terms. Let ∑𝑎𝑛 be another series of positive 

terms. If there exists 𝑚 ∈ N such that 
𝑎𝑛+1

𝑎𝑛
≥

𝑑𝑛+1

𝑑𝑛
 for all 𝑛 ≥ 𝑚, then ∑𝑎𝑛 is divergent. 

Proof: 

 (i) 
𝑎𝑛+1

𝑐𝑛+1
≤

𝑎𝑛

𝑐𝑛
 ( since 

𝑎𝑛+1

𝑎𝑛
≤

𝑐𝑛+1

𝑐𝑛
) 

∴ (
𝑎𝑛
𝑐𝑛
)  is a monotonic decreasing sequence. 

∴
𝑎𝑛
𝑐𝑛
≤ 𝑘 for all 𝑛 wnere 𝑘 =

𝑎1
𝑐1
.

∴ 𝑎𝑛 ≤ 𝑘𝑐𝑛 for all 𝑛 ∈ N.

 

Now, Σ𝑐𝑛 is convergent. Hence Σ𝑘𝑐𝑛 is also a convergent series of positive terms. 

∴ Σ𝑎𝑛 is also convergent ( by theorem 1).  

(ii) Proof is similar to that of (i). 
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Note:  

1. Theorems 2 and 3 are alternative, forms of the comparison test mentioned in theorem 1 and 

these forms of the comparison test are often easier to work with. 

2. The comparison test can be used only if we already have a large number of series whose 

convergence or divergence are known. We know that a geometric series Σ𝑟𝑛 converges if 0 ≤

𝑟 < 1 and diverges if 𝑟 ≥ 1. In the following theorem we give another family of series whose 

behaviour is known. 

Theorem 4: 

The harmonic series ∑
1

𝑛𝑝
 converges if 𝑝 > 1 and divergence if 𝑝 ≤ 1. 

Proof: 

Case (i)  

Let 𝑝 = 1. Then the series becomes Σ(1/𝑛) which divetron (refer example 4 of 3.2). 

Case (ii) 

 Let 𝑝 < 1. Then 𝑛𝑝 < 𝑛 for all 𝑛. 

∴
1

𝑛𝑝
>
1

𝑛
 for all 𝑛.

∴  By comparison test ∑
1

𝑛𝑝
 diverges. 

 

Case (iii) Let 𝑝 > 1. 

 Let 𝑠𝑛 = 1 +
1

2𝑝
+
1

3𝑝
+⋯……+

1

𝑛𝑝

𝑠2𝑛+1 = 1 = 1 +
1

2𝑝
+⋯……+

1

(2𝑛+1 − 1)𝑝

= 1 + (
1

2𝑝
1

3𝑝
) + (

1

4𝑝
+
1

5𝑝
+
1

6𝑝
+
1

7𝑝
) +⋯ . .

………+ (
1

(2𝑛)𝑝
+

1

(2𝑛+1𝑦𝑝
+⋯ . . +

1

(2𝑛+1 − 1)𝑝
)

< 1 + 2 (
1

2𝑝
) + 4 (

1

4𝑝
) + ⋯……+ 2𝑛 (

1

(2𝑛)𝑝
)

= 1 +
1

2𝑝−1
+

1

2𝑝−2
+⋯……+

1

2(𝑝−1)

 

∴ 𝑠2n+1 − 1 < 1 +
1

2𝑝−1
+ (

1

2𝑝−1
)
2

+⋯ . .+ (
1

2𝑝−1
)
𝑛

 

Now, since 𝑝 > 1, 𝑝 − 1 > 0. Hence 
1

2𝑝−1
< 1. 
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∴ 1 + (
1

2𝑝−1
) + (

1

2𝑝−1
)
2

+⋯……+ (
1

2𝑝−1
)
𝑛

<
1

1 −
1

2𝑝−1

= 𝑘( say )

∴ 𝑠2
n+1 − 1 < 𝑘.

 

Now let 𝑛 be any positive integer. Choose 𝑚 ∈ N such that 𝑛 ≤ 2𝑚+1 − 1.  

Since (𝑠𝑛) is a monotonic increasing sequence, 𝑠𝑛 ≤ 𝑠2
m+1

−1
. 

Hence 𝑠𝑛 < 𝑘 for all 𝑛. 

Thus (𝑠𝑛) is a monotonic increasing sequence and is bounded above. 

∴ (𝑠𝑛) is convergent. 

∴ ∑
1

𝑛𝑝
  is convergent. 

Problem 1: 

Discuss the convergence of the series ∑
1

√(𝑛3+1)
 

Solution: 

 
1

√(𝑛3+1)
<

1

𝑛3/2
. 

Also ∑  𝑛3/2  is convergent (by theorem 4). 

∴ By comparison test, ∑
1

√(𝑛3+1)
 is convergent. 

Problem 2:  

Discuss the convergence of the series ∑
√(𝑛+1)−√𝑛

𝑛𝑝
 

Solution: 

 𝑎𝑛 =
√(𝑛+1)−√𝑛

𝑛𝑝
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=
𝑛 + 1 − 𝑛

𝑛𝑝(√(𝑛 + 1) + √𝑛)

=
1

𝑛𝑝(√(𝑛 + 1) + √𝑛)

 Now, let 𝑏𝑛 =
1

𝑛𝑝+1/2
.

∴ lim
𝑛→∞

 
𝑎𝑛
𝑏𝑛
= lim

𝑛→−∞
 

𝑛𝑛
𝑝+1/2

𝑛𝑝(√(𝑛 + 1) + √𝑛)

 = lim
𝑛→−∞

 
1

√(1 + 1/𝑛) + 1)

=
1

2
.

 

Also ∑𝑏𝑛 is convergent if 𝑝 +
1

2
> 1 and divergent if 𝑝 +

1

2
≤ 1 (refer theorem 4). 

∴ Σ𝑎𝑛 is convergent if 𝑝 >
1

2
 and divergent if 𝑝 ≤

1

2
.  

Problem 3: 

 Discuss the convergence of the series ∑
12+22+⋯…+𝑛2

𝑛4+1
 

Solution: 

Let 𝑎𝑛 =
12+22+⋯…+𝑛2

𝑛4+1
. 

=
𝑛(𝑛 + 1)(2𝑛 + 1)

6(𝑛4 + 1)
 

Now, let 𝑏𝑛 =
1

𝑛
. 

∴ lim
⋯→

 
𝑎𝑛
𝑏𝑛
= lim

⋯∞
 
𝑛2(𝑛 + 1)(2𝑛 + 1)

6(𝑛4 + 1)

= lim
⋯∞

 
(1 +

1
𝑛) (2 +

1
𝑛)

6 (1 +
1
𝑛4
)

=
1

3
.

 

Also Σ𝑏𝑛 is divergent (by theorem 4). 

∴ Σ𝑎𝑛 is divergent (by theorem 2) 

Problem 4: 

Discuss the convergence of the series 1 +
1

22
+

22

33
+

33

44
+⋯…. 

Solution: 



 

73 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

Let 𝑎𝑛 =
𝑛𝑛

(𝑛+1)𝑛+1
 

 Let 𝑏𝑛 =
1

𝑛
.

∴ lim
𝑛→∞

 
𝑎𝑛
𝑏𝑛
= lim

𝑛→∞
 

𝑛𝑛+1

(𝑛 + 1)𝑛+1

= lim
𝑛→∞

 
1

(1 +
1
𝑛)

𝑛+1

=
1

𝑒
> 0

 

Also Σ𝑏𝑛 is divergent. 

∴ Σ𝑎𝑛 is divergent (by theorem 2). 

Problem 5:  

Discuss the convergence of the series∑  ∞
3 (log log 𝑛)− log 𝑛. 

Solution: 

 Let 𝑎𝑛 = (log log 𝑛)
− log 𝑛 

∴ 𝑎𝑛 = 𝑛
𝜃𝑛 where 𝜃𝑛 = log (log log 𝑛). 

Since lim𝑛→∞  log log log 𝑛 = ∞ there exists 𝑚 ∈ N 

Such that 𝜃𝑛 ≥ 2 for all 𝑛 ≥ 𝑚. 

∴ 𝑛𝜃𝑛 ≤ 𝑛−2 for all 𝑛 ≥ 𝑚
∴ 𝑎𝑛 ≤ 𝑛

−2 for all 𝑛 ≥ 𝑚
 

Also ∑𝑛−2 is convergent. 

∴ By comparison test the given series is convergent. 

Problem 6: 

Show that ∑
1

4𝑛2−1
=

1

2
. 

Solution: 

 Let 𝑎𝑛 =
1

4𝑛2−1
. 

Clearly, 𝑎𝑛 <
1

𝑛2
. 

Also ∑
1

𝑛2
 is convergent (by theorem 4) 

∴ By comparison test, the given series coverges. 

Now, 𝑎𝑛 =
1

4𝑛2−1
=

1

2
[

1

2𝑛−1
−

1

2𝑛+1
] (by partial fractions) 
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∴ 𝑠𝑛 = 𝑎1 + 𝑎2 +⋯ .+𝑎𝑛

=
1

2
[(
1

1
−
1

3
) + (

1

3
−
1

5
) +⋯ . . . + (

1

2𝑛 − 1
−

1

2𝑛 + 1
)]

=
1

2
[1 −

1

2𝑛 + 1
]

∴ lim
𝑛→∞

 𝑠𝑛 =
1

2
.

∴∑
1

4𝑛2 − 1
=
1

2
.

. 

Exercises: 

1.Discuss the convergence of the following series whose 𝑛th  terms are given below. 

(i) 
5+𝑛

3+𝑛2
         (ii) 

2𝑛

𝑛2+1
      (iii) 

√𝑛

𝑛2−1
      (iv) 

𝑛4−5𝑛2+1

𝑛6+3𝑛2+2
   (v) 

1

𝑛√(𝑛2+1)
    (vi) 

𝑛

(𝑛2+1)2/3
 

(vii) 
𝑛

(𝑛2+1)3/2
   (viii) 

1

𝑛−√𝑛
   (ix) 

𝑛(𝑛+1)

(𝑛+2)(𝑛+3)(𝑛+4)
  (x) 

1

𝑎+𝑛𝑥
 (xi) 

(𝑛+1)3

𝑛𝑘+(𝑛+2)𝑘
  (xii) 

√𝑛

𝑛+1
 

2. Prove that the series 

1

3
+

1.4

3.6
+

1⋅4.7

3⋅6.9
+⋯ ... is divergent but the series 

(
1

3
)
2

+ (
1.4

3.6
)
2

+ (
1.4.7

3.6.9
)
2

+⋯ . . . is convergent.  

3. Use the inequality 𝑒𝑥 > 𝑥 if 𝑥 > 0 to show that the series Σ𝑒−𝑛
2
 converges. 

4. Show that if ∑𝑎𝑛 is convergent then ∑𝑎𝑛
2 , ∑

𝑎𝑛

1+𝑎𝑛
 and ∑

𝑎𝑛

1+𝑛2𝑎𝑛
 are also convergent. 

5.If ∑𝑎𝑛 is a divergent series of positive terms, prove that ∑
𝑎𝑛

1+𝑛2𝑎𝑛
 is convergent. 
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Unit IV                                 

Kummer’s test – Root test – Integral Test.  

Chapter 4: Sections 4.1 - 4.3 

 

4.1. Kummer’s Test:  

Theorem 1:(Kummer's test) 

Let ∑  𝑎𝑛 be a given series of positive terms and ∑  
1

𝑑𝑛
 be a series of positive terms diverging 

to ∞. Then 

(i) ∑  𝑎𝑛 converges if lim
𝑛→∞

  (𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1) > 0 and 

(ii) ∑  𝑎𝑛 diverges if lim
𝑛→∞

  (𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1) < 0. 

Proof: 

(i) Let lim
𝑛→∞

  (𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1) = 𝑙 > 0. 

We distinguish two cases. 

Case (i) 𝑙 is finite: 

Then given 𝜀 > 0, there exists 𝑚 ∈ 𝑁 such that 

𝑙 − 𝜀 < 𝑑𝑛
𝑎𝑛
𝑎𝑛+1

− 𝑑𝑛+1 < 𝑙 + 𝜀 for all 𝑛 ≥ 𝑚 

∴ 𝑑𝑛𝑎𝑛 − 𝑑𝑛+1𝑎𝑛+1 > (𝑙 − 𝜀)𝑎𝑛+1 for all 𝑛 ≥ 𝑚. 

Taking 𝜀 =
1

2
𝑙, we get 𝑑𝑛𝑎𝑛 − 𝑑𝑛+1𝑎𝑛+1 >

1

2
𝑙𝑎𝑛+1 for all 𝑛 ≥ 𝑚. 

Now, let 𝑛 ≥ 𝑚. 

∴𝑑𝑚𝑎𝑚 − 𝑑𝑚+1𝑎𝑚+1 >
1

2
𝑙𝑎𝑚+1

𝑑𝑚+1𝑎𝑚+1 − 𝑑𝑚+2𝑎𝑚+2 >
1

2
𝑙𝑎𝑚+2

 

𝑑𝑛−1𝑎𝑛−1 − 𝑑𝑛𝑎𝑛 >
1

2
𝑙𝑎𝑛. 

Adding. we get 

 

𝑑𝑚𝑎𝑚 − 𝑑𝑛𝑎𝑛 >
1

2
𝑙(𝑎𝑚+1 +⋯…+ 𝑎𝑛). 

 

∴ 𝑑𝑛𝑎𝑚 − 𝑑𝑛𝑎𝑛 >
1

2
𝑙(𝑠𝑛 − 𝑠𝑚) where 𝑠𝑛 = 𝑎1 + 𝑎2 +⋯…+ 𝑎𝑛 

∴ 𝑑𝑚𝑎𝑚 >
1

2
𝑙(𝑠𝑛 − 𝑆𝑚). 
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∴ 𝑠𝑛 <
2𝑑𝑚𝑎𝑚+𝑙𝑠𝑚

𝑙
 which is independent of 𝑛. 

∴ The sequence (𝑠𝑛) of partial sums is bounded. 

∴ 𝑎𝑛 is convergent. 

Case (ii)  𝑙 = ∞. 

Then given any real number 𝑘 > 0 there exists a positive integer 𝑚.  

such that 𝑑𝑛 (
𝑎𝑛

𝑎𝑛+1
) − 𝑑𝑛+1 > 𝑘 for all 𝑛 ≥ 𝑚. 

∴ 𝑑𝑛𝑎𝑛 − 𝑑𝑛+1𝑎𝑛+1 > 𝑘𝑎𝑛+1 for all 𝑛 ≥ 𝑚. 

Now, let 𝑛 ≥ 𝑚. Writing the above inequality for 

𝑚,𝑚 + 1,…… . (𝑛 − 1) and adding we get 

𝑑𝑚𝑎𝑚 − 𝑑𝑚𝑎𝑛 > 𝑘(𝑎𝑚+1 +⋯ . .+(𝑎𝑛)

 = 𝑘(𝑠𝑛 − 𝑠𝑚).

∴ 𝑑𝑚𝑎𝑚 > 𝑘(𝑠𝑚 − 𝑠𝑚).

∴ 𝑠𝑛 <
𝑑𝑚𝑎𝑚
𝑘

+ 𝑠𝑚

 

∴ The sequence (𝑠𝑛) is bounded and hence Σ𝑎𝑛 is convergent. 

(ii) lim
𝑛→∞

  (𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1) = 1 < 0 

Suppose 𝑙 is finite. 

Choose 𝜀 > 0 such that 𝑙 + 𝜀 < 0. 

Then there exists 𝑚 ∈  N such that 

𝑙 − 𝜀 < 𝑑𝑛
𝑎𝑛
𝑎𝑛+1

− 𝑑𝑛+1 < 𝑙 + 𝜀 < 0 for all 𝑛 ≥ 𝑚 

∴ 𝑑𝑛𝑎𝑛 < 𝑑𝑛+1𝑎𝑛+1 for all 𝑛 ≥ 𝑚 

 Now, let 𝑛 ≥ 𝑚. Then 𝑑𝑚𝑎𝑚 < 𝑑𝑚+1𝑎𝑚+1 

𝑑𝑚+1𝑎𝑚+1 < 𝑑𝑚+2𝑎𝑚+2 

𝑑𝑛−1𝑎𝑛−1 < 𝑑𝑛𝑎𝑛 

∴ 𝑑𝑚𝑎𝑚 < 𝑑𝑛𝑎𝑛. 

∴ 𝑎𝑛 >
𝑑𝑚𝑎𝑚

𝑑𝑛
. 

Also, by hypothesis ∑  
1

𝑑𝑛
 is divergent. 

Hence ∑  ∞
𝑛=1

𝑑𝑚𝑎𝑚

𝑑𝑛
 is divergent. 

∴ By comparison test ∑  𝑎𝑛 is divergent. 
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The proof is similar if 𝑙 = −∞. 

Note 1: 

The above test fails if lim
𝑛→∞

  (𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1) = 0. 

Note 2:  

The divergence of Σ(1/𝑑𝑛) has not been used in the proof of (i). 

Corollary 1 (D 'Alembert's ratio test) 

Let ∑  𝑎𝑛 be a series of positive terms. Then Σ𝑎𝑛 converges if.  

lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
> 1 and diverges if lim

𝑛→∞
 
𝑎𝑛

𝑎𝑛+1
< 1. 

Proof: 

The series 1 + 1 + 1   is divergent. We can put 𝑑𝑛 = 1 in Kummer’s Test. 

Then 𝑑𝑛
𝑢𝑛

𝑎𝑛+1
− 𝑑𝑛+1 =

𝑎𝑛

𝑎𝑛+1
− 1 

∴ Σ𝑎𝑛 converges if lim
𝑛→∞

  (
𝑎𝑛

𝑎𝑛+1
− 1) > 0. 

∴ ∑  𝑎𝑛 converges if lim
𝑛→𝑥

 
𝑎𝑛

𝑎𝑛+1
> 1. 

Similarly ∑  𝑎𝑛 diverges if lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
< 1. 

Corollary 2: (Raabe's Test) 

Let ∑  𝑎𝑛 be a scries of positive terms. Then ∑  𝑎𝑛 converges if lim
𝑛→∞

 𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1) > 1 and 

diverges if lim
𝑛→∞

 𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1) < 1. 

Proof:  

The series ∑  
1

𝑛
 is divergent. 

∴ We can put 𝑑𝑛 = 𝑛 in Kummer's test. 

Then 𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1 = 𝑛

𝑎𝑛

𝑎𝑛+1
− (𝑛 + 1) 

= 𝑛 (
𝑎𝑛
𝑎𝑛+1

− 1)  1. 

∴ Σ𝑎𝑛 converges if lim
𝑛→∞

 𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1) > 1 and diverges if lim

𝑛→∞
 𝑛 (

𝑎𝑛

𝑎𝑛+1
− 1) < 1. 

Corollary 3. (De Morgan and Bertrand's test) 

Let ∑  𝑎𝑛 be a series of positive terms.  
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Then Σ𝑎𝑛 is convergent if lim
𝑛→∞

 log 𝑛 [𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1) − 1] > 1 and is divergent if 

lim
𝑛→∞

 log 𝑛 [𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1) − 1] < 1. 

Proof:  

The series ∑  
1

𝑛log 𝑛
 is divergent. (This is proved later.) 

∴ We can put 𝑑𝑛 = 𝑛log 𝑛 in Kummer's test. 

Then 𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1 = (𝑛log 𝑛)

𝑎𝑛

𝑎𝑛+1
− (𝑛 + 1)log (𝑛 + 1) 

= log 𝑛 [𝑛 (
𝑎𝑛
𝑎𝑛+1

− 1) − 1] + (𝑛 + 1)log 𝑛 − (𝑛 + 1)log (𝑛 + 1) 

= log 𝑛 [𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1) − 1] − (𝑛 + 1)log (

𝑛+1

𝑛
). 

∴ lim𝑛→∞   (𝑑𝑛
𝑎𝑛
𝑎𝑛+1

− 𝑑𝑛+1) 

 = lim
𝑛→∞

 (log 𝑛) [𝑛 (
𝑎𝑛
𝑎𝑛+1

− 1) − 1] − lim
𝑛→∞

 log (1 +
1

𝑛
)
𝑛+1

 = lim
𝑛→∞

 (log 𝑛) [𝑛 (
𝑎𝑛
𝑎𝑛+1

− 1) − 1] − 1.

 

∴ The result follows by applying Kummer's test. 

Note:  

The following is a more general form of Kummer's test. 

Let ∑  𝑎𝑛 be a given series of positive terms and ∑  
1

𝑑𝑛
 be a series of positive terms diverging 

to ∞. 

Then (i) Σ𝑎𝑛 converges if liminf (𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1) > 0 

and (ii) ∑  𝑎𝑛 diverges if limsup (𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1) < 0. 

Thus D' Alembert's ratio test, Raabe's test, DeMorgan and Bertrand's test can be put in the 

more general form by replacing "limit" by "lim inf" and " lim sup" as the case may be. 

Theorem 2: (Gauss’s Test) 

Let Σ𝑎𝑛 be a series of positive terms such that 
𝑎𝑛

𝑎𝑛+1
= 1 +

𝛽

𝑛
+

𝑟𝑛

𝑛𝑝
 where 𝑃 > 1and (𝑟𝑛) is a 

bounded sequence. Then the series Σ𝑎𝑛 converges if 𝛽 > 1 and diverges if 𝛽 ≤ 1.  

Proof: 

𝑎𝑛
𝑎𝑛+1

= 1 +
𝛽

𝑛
+
𝑟𝑛
𝑛𝑝
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∴ 𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1 ) = 𝑛 (

𝛽

𝑛
+

𝑟𝑛

𝑛𝑝
) = 𝛽 +

𝑟𝑛

𝑛𝑝−1
. 

Now, since 𝜌 > 1, lim
𝑛→∞

 
1

𝑛𝑛−1
= 0. 

Also (𝑟𝑛) is a bounded sequence. 

Hence lim
𝑛→∞

 
𝑟𝑛

𝑛𝑛−1
= 0       (by solved problem 4 of 3.6 ). 

∴ lim
𝑛→∞

 𝑛 (
𝑎𝑛
𝑎𝑛+1

− 1) = 𝛽 

∴ By Raabes's test ∑  𝑎𝑛 converges if 𝛽 > 1 and ∑  𝑎𝑛 diverges if 𝛽 < 1. 

If 𝛽 = 1, Raabes's test fails. In this case we apply Kummer's test by taking 𝑑𝑛 = 𝑛log 𝑛. 

Now, 𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1 

 = 𝑛log 𝑛 (1 +
1

𝑛
+
𝑟𝑛
𝑛𝑝
) − (𝑛 + 1)log (𝑛 + 1)

 = −(𝑛 + 1)log (1 +
1

𝑛
) +

𝑟𝑛log 𝑛

𝑛𝑝−1

 = −log (1 +
1

𝑛
)
𝑛+1

+
𝑟𝑛log 𝑛

𝑛𝑝−1

 

Now, by hypothesis (𝑟𝑛) is a bounded sequence and by problem 9 of 1.7 ( 
𝑟𝑛log 𝑛

𝑛𝑝−1
) → 0 

( 
𝑟𝑛log 𝑛

𝑛𝑝−1
) → 0 

∴ lim
𝑛→∞

  (𝑎𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑎𝑛+1) = −log 𝑒 = −1 < 0. 

∴ By Kummer's tesi ∑  𝑎𝑛 diverges. 

Note: 

Let (𝑎𝑛) be any sequence (𝑏𝑛) be a sequence of positive real numbers. We say that (𝑎𝑛) is of 

the same order of magnitude as (𝑏𝑛) if there exists a real number 𝑘  

such that |𝑎𝑛| < 𝑘𝑏𝑛  for all 𝑛 and in this case we write 𝑎𝑛 = 𝑂(𝑏𝑛).  

In particular if (
𝑎𝑛

𝑏𝑛
) is a convergent sequence then 𝑎𝑛 = 𝑂(𝑏𝑛). 

For example if 𝑎𝑛 =
1

(𝑛+1)(𝑛+2)
 then 𝑎𝑛 = 𝑂(1/𝑛

2). 

Now Gauss's test can be restated as follows. 

Let ∑  𝑎𝑛 be a series of positive terms such that 
𝑎𝑛

𝑎𝑛+1
= 1 +

𝛽

𝑛
+𝑂 (

1

𝑛𝑝
) where 𝑝 > 1. Then 

∑  𝑎𝑛 converges if 𝛽 > 1 and diverges il 𝛽 ≤ 1. 

Problem 1:  

Test the convergence of the series 
1

3
+

1.2

3.5
+

1⋅2.3

3⋅5⋅7
+⋯ ... 
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Solution:  

Let 𝑎𝑛 =
1.2⋅3………𝑛

3.5⋅7…….(2𝑛+1)
. 

∴
𝑎𝑛
𝑎𝑛+1

=
2𝑛 + 3

𝑛 + 1
=
2 + 3/𝑛

1 + 1/𝑛
 

∴ lim
𝑛→∞

𝑎𝑛
𝑎𝑛+1

− 2 > 1. 

∴ By I)' Alembert's ratio test Σ𝑎𝑛 is convergent. 

Problem 2: 

Test the convergence of Σ
𝑛𝑛

𝑛!
. 

Solution: 

Let 𝑎𝑛 =
𝑛𝑛

𝑛!
 

 ∴
𝑎𝑛
𝑎𝑛+1

=
(𝑛 + 1)𝑛𝑛

(𝑛 + 1)𝑛+1
=

1

(1 +
1
𝑛)

𝑛 .

 ∴ lim
𝑛→∞

 
𝑎𝑛
𝑎𝑛+1

=
1

𝑒
< 1.

 ∴ ∑ 𝑎𝑛 is divergent. 

 

Problem 3: 

Test the convergence of the series ∑  
2𝑛𝑛!

𝑛𝑛
. 

Solution: 

Let 𝑎𝑛 =
2𝑛𝑛!

𝑛𝑛
. 

∴
𝑎𝑛

𝑎𝑛+1
=

(𝑛+1)𝑛+𝑟

2(𝑛+1)𝑛𝑛
=

1

2
(1 +

1

𝑛
)
𝑛

. 

∴ lim
𝑛→𝜔

 
𝑎𝑛

𝑎𝑛+1
=

𝑒

2
> 1. 

∴ By ratio test the series converges. 

Problem 4:  

Test the convergence of the series ∑  
3𝑛𝑛!

𝑛𝑛
. 

Solution: 

As in the above problem, we find that lim
𝑛→=2

 
𝑎𝑛

𝑎𝑛,1
=

𝑒

3
= 1. . 

∴ By ratio test the series diverges. 
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Problem 5: 

Test the convergence of the series ∑  √
𝑛

𝑛+1
𝑥𝑛 where 𝑥 is any posilive real number. 

Solution: 

Since 𝑥 is positive the given series is a series of positive terms. 

 Now, 

𝑎𝑛
𝑎𝑛+1

 = √
𝑛(𝑛 + 2)

(𝑛 + 1)
(
1

𝑥
)

 = √
(1 + 2/𝑛)

1 + 1/𝑛
(
1

𝑥
) .

∴ lim
𝑛→∞

 
𝑎𝑛
𝑎𝑛+1

 =
1

𝑥
.

. 

∴ By ratio test ∑  𝑎𝑛 converges if 𝑥 < 1 and diverges if 𝑥 > 1. 

If 𝑥 = 1 the test fails. 

 When 𝑥 = 1, 𝑎𝑛 = √
𝑛

𝑛 + 1
=

1

√(1 + 1/𝑛)
 

∴ lim
𝑛→∞

𝑎𝑛 = 1 

∴ The series diverges. 

Problem 6: 

Test the convergence of the series 

1 +
𝑥2

2
+
𝑥4

4
+
𝑥6

6
+ ⋯ . . where 𝑥 is any positive real number.  

Solution:  

Since 𝑥 is a positive real number, the given series is a series of positive terms. 

Let 𝑎𝑛 =
𝑥2𝑛−2

2𝑛−2
, (𝑛 > 1). 

 ∴
𝑎𝑛
𝑎𝑛+1

=
2𝑛

2𝑛 − 2
(
1

𝑥2
) .

 ∴ lim
𝑛→∞

 
𝑎𝑛
𝑎𝑛+1

=
1

𝑥2
.

 

∴ By ratio test, the series converges if 𝑥2 < 1 and diverges if 𝑥2 > 1. ∴ The series converges 

if 𝑥 < 1 and diverges if 𝑥 > 1. 

If 𝑥 = 1 the test fails. 

When 𝑥 = 1, 𝑎𝑛 =
1

2𝑛−2
. 



 

82 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

By comparing with the series Σ(1/𝑛) we see that the series diverges. 

Problem 7: 

Test the convergence of the series ∑  
𝑛2+1

5𝑛
. 

Solution: 

  
𝑎𝑛

𝑎𝑛+1
=

5(𝑛2+1)

(𝑛+1)2+1
 

=
5(𝑛2 + 1)

𝑛2 + 2𝑛 + 2
 

=
5(1 +

1
𝑛2
)

1 +
2
𝑛
+
2
𝑛2

 

∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
= 5. 

∴ By ratio test the series converges. 

Problem 8: 

Test the convergence of the series 

(
1

2
+

1

3
) + (

1

22
+

1

32
) + (

1

23
+

1

33
) +………… 

Solution: 

 Let 𝑎𝑛 =
1

2𝑛
+

1

3𝑛
 

=
2𝑛+3𝑛

2𝑛3𝑛
. 

∴
𝑎𝑛

𝑎𝑛+1
=

6(2𝑛+3𝑛)

2𝑛+1+3𝑛+1
. 

=
2[1+(2/3)𝑛]

[1+(2/3)𝑛+1]
. 

∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
= 2. 

∴ By ratio test the given series converges. 

Problem 9:  

Test the convergence of the series ∑  
𝑥𝑛

𝑛
. 

Solution: 

Let 𝑎𝑛 =
𝑥𝑛

𝑛
. 
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 ∴
𝑎𝑛
𝑎𝑛+1

=
𝑛 + 1

𝑛
(
1

𝑥
) .

 = (1 +
1

𝑛
) (
1

𝑥
) .

 ∴ lim
𝑛→∞

 
𝑎𝑛
𝑎𝑛+1

=
1

𝑥
.

 

∴ The series converges if 𝑥 < 1 and diverges if 𝑥 > 1. 

If 𝑥 = 1, the series becomes ∑  
1

𝑛
 which is divergent. 

Problem 10:  

Test the convergence of the series ∑  
𝑛𝑝

𝑛!
(𝑝 > 0). 

Solution: 

Let 𝑎𝑛 =
𝑛𝑝

𝑛!
. 

∴
𝑎𝑛

𝑎𝑛+1
=

𝑛𝑝(𝑛+1)

(𝑛+1)𝑝
. 

=
𝑛 + 1

(1 + 1/𝑛)𝑝
 

∴ lim
𝑛→𝑥

 
𝑎𝑛

𝑎𝑛 + 1
= ∞ 

∴ By ratio test ∑  𝑎𝑛 is convergent. 

Problem 11:  

Test the convergence of the series 

1

3
𝑥 +

1

3

2

5
𝑥2 +

1

3

2

5
⋅
3

7
𝑥3 +⋯…… 

Solution:  

Let 𝑎𝑛 =
1⋅2⋅3…𝑛

3⋅5⋅7…(2𝑛+1)
𝑥𝑛. 

∴
𝑎𝑛
𝑎𝑛+1

=

=
2𝑛 + 3

𝑛 + 1
(
1

𝑥
)

=
2 + 3/𝑛

1 + 1/𝑛
(
1

𝑥
) .

 ∴ lim
𝑛→∞

 
𝑎𝑛
𝑎𝑛+1

=
2

𝑥
.
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∴ By ratio test the series converges if 
2

𝑥
> 1. 

∴ The series converges if 𝑥 < 2 and diverges if 𝑥 > 2. 

If 𝑥 = 2, the ratio test fails. 

In this case, 
𝑎𝑛

𝑎𝑛+1
=

2𝑛+3

2𝑛+2
. 

∴
𝑎𝑛

𝑎𝑛+1
− 1 =

1

2𝑛+2
. 

∴ 𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1) =

𝑛

2𝑛+2
=

1

2+2/𝑛
. 

∴ lim
𝑛→∞

 𝑛 (
𝑎𝑛

𝑎𝑛+1
− 1) =

1

2
. 

∴ By Raabe's test the series diverges. 

Problem 12:  

Test the convergence of the hyper geometric series 

1 +
𝛼𝛽

𝑟
𝑥 +

𝛼(𝛼 + 1)𝛽(𝛽 + 1)

𝑟(𝑟 + 1)2!
𝑥2 +⋯… 

Solution: 

Let 𝑎𝑛 =
𝛼(𝛼+1)…(𝛼+𝑛−1)𝛽(𝛽+1)…(𝛽+𝑛−1)

𝑟(𝑟+1)…(𝑟+𝑛−1)𝑛!
𝑥𝑛 

∴
𝑎𝑛
𝑎𝑛+1

=
(𝑟 + 𝑛)(𝑛 + 1)

(𝛼 + 𝑛)(𝛽 + 𝑛)
(
1

𝑥
) 

=
(1 +

𝑟
𝑛) (1 +

1
𝑛)

(1 +
𝛼
𝑛)(1 +

𝛽
𝑛)
(
1

𝑥
) 

∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
=

1

𝑥
. 

∴ The series converges if 𝑥 < 1 and diverges if 𝑥 > 1. 

When 𝑥 = 1, the ratio test fails. 

In this case we apply Gauss' test. 

𝑎𝑛
𝑎𝑛+1

 =
(1 +

𝑟
𝑛) (1 +

1
𝑛)

(1 +
𝛼
𝑛)(1 +

𝛽
𝑛)

 = (1 +
𝑟

𝑛
)(1 +

1

𝑛
) (1 +

𝛼

𝑛
)
−1

(1 +
𝛽

𝑛
)
−1

 = (1 +
𝑟

𝑛
)(1 +

1

𝑛
) [1 −

𝛼

𝑛
+ 𝑂 (

1

𝑛2
)] [1 −

𝛽

𝑛
+ 𝑂 (

1

𝑛2
)]

 = 1 +
(𝑟 + 1 − 𝛼 − 𝛽)

𝑛
+ 𝑂 (

1

𝑛2
)
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∴ By Gauss' test the series converges if 𝑟 > 𝛼 + 𝛽 and diverges 

if 𝑟 ≤ 𝛼 + 𝛽. Hence the given series 

(i) converges if 𝑥 < 1 

(ii) diverges if 𝑥 > 1 

 (iii) converges if 𝑥 = 1 and 𝑟 > 𝑎 + 𝛽 

(iv) diverge if 𝑥 = 1 and 𝑟 ≤ (1 + 𝛽). 

Problem 13: 

Test for convergence of the series whose 𝑛 fernll is giventy 

𝑎𝑛 =
12 ⋅ 32 ⋅ 52…(2𝑛 − 1)2

22 ⋅ 42 ⋅ 62…(2𝑛)2
 

Solution: 

 
𝑢𝑛

𝑎𝑛+1
=

(2𝑛+2)2

(2𝑛+1)2
 

 = (1 +
1

𝑛
)
2

(1 +
1

2𝑛
)
−2

 = (1 +
2

𝑛
+
1

𝑛2
) [1 −

1

𝑛
+ 𝑂 (

1

𝑛2
)]

 = 1 +
1

𝑛
+ 𝑂 (

1

𝑛2
)

 

By Gauss's test the given series is divergent. 

Exercises: 

Test the convergence of the following series. 

(1) ∑  
𝑛

2𝑛
         (2) ∑  

.5𝑛

𝑛2+5
     (3) 1 +

1.3

1.4
+

1⋅3.5

1⋅4⋅7
+    (4) 1 +

1+𝛼

1+𝛽
+

(1+𝛼)(2+𝛼)

(1+𝛽)(2+𝛽)
+ 

(5) ∑  
𝑥𝑛

√(2𝑛+3)
   (6) 1 + 𝑎 +

𝑎(𝑎+1)

2!
+

(𝑎+1)(𝑎+2)

3!
+    (7) 

1

3
𝑥 +

2!

3⋅5
𝑥2 +

3!

3⋅5⋅7
𝑥3 +   

(8) 1 +
3

7
𝑥 +

3⋅6

7⋅10
𝑥2 +

3⋅6⋅9

7⋅10⋅13
𝑥3 +    (9) ∑  

√𝑛

𝑛+1
𝑥𝑛   (10) ∑  

𝑥2𝑛+1

√(2𝑛+3)
 

4.2. Root Test and Condensation Test: 

Theorem 1: (Cauchy's root test) 

Let ∑𝑎𝑛 be a series of penitive terms. Then ∑𝑎𝑛 is convergent if lim
𝑛→∞

 𝑎𝑛
1/𝑛

< 1 and divergent 

if lim
𝑛→∞

 𝑎𝑛
1/𝑛

> 1. 

Proof: 

Case (i) Let lim
𝑛→∞

 𝑎𝑛
1/𝑛

= 𝑙 < 1 

Choose 𝜀 > 0 such that 𝑙 + 𝜀 < 1. 
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Then there exists 𝑚 ∈ 𝑁 such that 𝑎𝑛
1/𝑛

< 𝑙 + 𝜀 for all 𝑛 ≥ 𝑚. 

∴ 𝑎𝑛 < (𝑙 + 𝜀)
𝑛 for all 𝑛 ≥ 𝑚. 

Now, since 𝑙 + 𝜀 < 1, Σ̇(𝑙 + 𝜀)𝑛 is convergent. 

(by example 2 of 3.1 ) 

∴ By comparison test Σ𝑎𝑛 is convergent. 

Case (ii) Let lim𝑛→∞  𝑎𝑛
1/𝑛

= 𝑙 > 1. 

Choose 𝜀 > 0 such that 𝑙 − 𝜀 > 1. 

Then there exists 𝑚 ∈ 𝑁 such that 𝑎𝑛
1/𝑛

> 𝑙 − 𝜀 for all 𝑛 ≥ 𝑚. 

∴ 𝑎𝑛 > (𝑙 − 𝜀)
𝑛 for all 𝑛 ≥ 𝑚. 

Now, since 𝑙 − 𝜀 > 1, Σ(𝑙 − 𝑠)𝑛 is divergent (by example 2 of 3.1 ).  

∴ By comaprison test, Σ𝑎𝑛 is divergent. 

Note: 

The following is a more general form of Cauchy's root test. 

Let ∑𝑎𝑛 be a series of positive terms. Then Σ𝑎𝑛 is convergent if lim sup 𝑎𝑛
𝑙/𝑛

< 1 and 

divergent if lim sup 𝑎𝑛
1/𝑛

> 1. 

Theorem 2: (Cauchy's condensation text) 

Let 𝑎1 + 𝑎2 + 𝑎3 +……..+𝑎𝑛 +⋯……  (1)be a series of positive terms and whose terms are 

monotonic decreasing. Then this series converges or diverges according as the series 

𝑔𝑎𝑔 + 𝑔
2𝑎𝑔

2 +⋯………+ 𝑔𝑛𝑎𝑧
n +       ……………… (2) 

converges or diverges where 𝑔 is any positive integer > 1. 

Proof: 

Let 𝑠𝑛 = 𝑎1 + 𝑎2 +   +𝑎𝑛 and 

𝑡𝑠 = 𝑔𝑎𝑔 + 𝑔
2𝑎𝑔

2 +⋯………+ 𝑔n𝑎𝑔
𝑛  . 

Then 𝑠𝑔
𝑛 = (𝑎1 + 𝑎2 +⋯……+ 𝑎𝑔) + (𝑎g+1 + 𝑎g+2 +⋯……+ 𝑎𝑔

2)+ 

…………..+(𝑎𝑔+1
𝑛−1 + 𝑎𝑔+2

𝑛−1 +⋯……+ 𝑎𝑔
𝑛) 

≤ 𝑔𝑎1 + (𝑔
2 − 𝑔)𝑎𝑔 +⋯… . . +(𝑔

𝑛 − 𝑔𝑛−1)𝑎𝑔
𝑛−1 ⋅ 

( since the terms of the series are monotonic decreasing). 

= 𝑔𝑎1 + 𝑔(𝑔 − 1)𝑎𝑔 + 𝑔
2(𝑔 − 1)𝑎𝑔

2 +⋯……+ 𝑔𝑛−1(𝑔 − 1)𝑎𝑔
𝑛−1 
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= 𝑔𝑎1 + (𝑔 − 1)(𝑔𝑎𝑔 + 𝑔
2𝑎𝑔

2 + ……… ..  +𝑔𝑛−1𝑎𝑔
𝑛−1 

= 𝑔𝑎1 + (𝑔 − 1)𝑡𝑛−1. 

∴ 𝑠𝑔
𝑛 ≤ 𝑔𝑎1 + (𝑔 − 1)𝑡𝑛−1. 

∴ If the series (2) converges, then (1) converges. 

Now, 𝑠𝑔
𝑛 ≥ 𝑔𝑎𝑔 + (𝑔

2 − 𝑔)𝑎𝑔
2 +   +(𝑔𝑛 − 𝑔𝑛−1)𝑎𝑔

𝑛 

= 𝑔𝑎𝑔 +
𝑔 − 1

𝑔
(𝑔2𝑎𝑧

2 +⋯……+ 𝑔𝑛𝑎𝑔𝑛) 

= 𝑔𝑎𝑔 +
𝑔−1

𝑔
(𝑡𝑛 − 𝑔𝑎𝑔) = 𝑎𝑔 +

𝑔−1

𝑔
𝑡𝑛. 

∴ If the series (2) diverges, then (1) diverges. 

Problem 1: 

Test the convergence of ∑  
1

(log 𝑛)𝑛
 

Solution: 

 Let 𝑎𝑛 =
1

(log 𝑛)𝑛
 

∴ √𝑎𝑛
𝑛 =

1

log 𝑛
. 

∴ lim√𝑎0
𝑛 = 0 < 1. 

∴ By Cauchy's root test ∑  
1

(log 𝑛)𝑛
 converges. 

Problem 2:  

Test the convergence of ∑  (1 +
1

𝑛
)
−𝑛

 

Solution: 

Let 𝑎𝑛 = (1 +
1

𝑛
)
−𝑛

 

∴ √𝑎𝑛
𝑛 = (1 +

1

𝑛
)
−𝑛

 

∴ lim𝑛→−∞   √𝑎𝑛
n =

1

𝑒
 (refer problem 3 of 1.7 ) 

< 1 

∴ By Cauchy's root test the series converges. 

Problem 3: 

Prove that the series ∑  𝑒−√𝑛𝑥𝑛 converges if 0 < 𝑥 < 1 and diverges if 𝑥 > 1. 

Solution: 

Let 𝑎𝑎 = 𝑒
−√𝑛𝑥𝑛. 
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 ∴ 𝑎𝑛
1/𝑛

= 𝑒−1/√𝑛𝑥.

 ∴ lim
𝑛→−

 𝑎𝑛
𝜈𝑛 − 𝑥.

 

∴ By Cauchy's root test the given series converges if 0 < 𝑥 < 1 and diverges if 𝑥 > 1. 

Problem 4:  

Test the convergence of ∑
𝑛3+𝑎

2𝑛+𝑎
. 

Solution: 

Let 𝑎𝑛 =
𝑛3+𝑎

2𝑛+𝑎
 and 𝑏𝑛 =

𝑛3

2𝑛
 

∴
𝑎𝑛
𝑏𝑛
 = (

𝑛3 + 𝑎

2𝑛 + 𝑎
) (
2𝑛

𝑛3
)

 = (
𝑛3 + 𝑎

𝑛3
) (

2𝑛

2𝑛 + 𝑎
)

 = (1 +
𝑎

𝑛3
) (

1

1 + (𝑎/2𝑛)
)

 

lim
𝑛→∞

 
𝑎𝑛

𝑏𝑛
= 1. 

∴ By comparison test, the given series is convergent or divergent according as ∑
𝑛3

2𝑛
 is 

convergent or divergent. 

Now, √𝑏𝑛
𝑛 = (

𝑛3

2𝑛
)
1/𝑛

=
𝑛3/𝑛

2
. 

Also lim𝑛3/𝑛 = 1. 

∴ lim
𝑛→−∞

  √𝑏𝑛
𝑛 =

1

2
. 

∴ Σ𝑏𝑛 is convergent. 

∴ Σ𝑎𝑛 is convergent. 

Problem 5: 

Test the convergence of ∑
1

𝑛log 𝑛
. 

Solution: 

By Cauchy’s condensation test, ∑
1

𝑛log 𝑛
 converges or diverges with the series. 

∑
2𝑛

2𝑛log 2𝑛
=∑ 

1

𝑛log 2
=

1

log 2
∑  

1

𝑛
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Now, the series ∑
1

𝑛
 diverges. 

∴ The given series diverges. 

Problem 6:  

Test the convergence of the series ∑
1

𝑛(log 𝑛)p
. 

Solution: 

The given series converges or diverges with the series 

∑
2𝑛

2𝑛(log 2𝑛)𝑝
 = ∑  

1

(log 2)𝑝𝑛𝑝

 =
1

(log 2)𝑝
∑ 

1

𝑛𝑝

 

The series ∑
1

𝑛
 converges if 𝑝 > 1 and diverges if 𝑝 ≤ 1. 

∴ The given series converges if 𝑝 > 1 and diverges if 𝑝 ≤ 1. 

Problem 7: 

Test the convergence of the series 
1

2
+

1

3
+

1

22
+

1

32
+

1

23
+

1

33
+⋯… 

Solution:  

We have 𝑎𝑛
1/𝑛

= {
(

1

3𝑛/2
)
1/𝑛

 If 𝑛 is even

(
1

2(𝑛+1)/2
)
1/𝑛

 If 𝑛 is odd

  

𝑎𝑛
1/𝑛

=

{
 
 

 
 

1

√3
 If 𝑛 is even

1

21/2(1+
1
n
)
 If 𝑛 is odd

 

Now, the sequence 
1

2
1/2(1+

1
n
)
 converges to 

1

√2
 as 𝑛 → −∞. 

1

√3
 and 

1

√2
 are the only limit points of the given sequences lim sup 𝑎𝑛

𝑙

𝑛 =
1

√2
< 1. 

By Cauchy’s root test the given series is convergent. 
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4.3. Integral Test: 

Theorem 1:(Cauchy's integral test) 

Let 𝑓 be a non-negative monotonic decreasing integrable function defined on [1,∞). Let 

𝑙𝑛 = ∫  
𝑛

1
𝑓(𝑥)𝑑𝑥. Then the series Σ𝑓(𝑛) converges iff the sequence (𝐼𝑛) converges. Further 

the sum of the series lies between 𝑙 = lim
𝑛→∞

 𝐼𝑛 and 𝐼 + 𝑓(1). 

Proof: 

Let 𝑓(𝑛) = 𝑎𝑛. Since 𝑓 is monotonic decreasing 𝑓(𝑛 − 1) ≥ 𝑓(𝑥) ≥ 𝑓(𝑛) where 𝑛 − 1 ≤

𝑥 ≤ 𝑛. 

∴ 𝑎𝑛−1 ≥ 𝑓(𝑥) ≥ 𝑎𝑛

 ∴ ∫  
𝑛

𝑛−1

 𝑎𝑛−1𝑑𝑥 ≥ ∫  
𝑛

𝑛−1

 𝑓(𝑥)𝑑𝑥 ≥ ∫  
𝑛

𝑛−1

 𝑎𝑛𝑑𝑥
 

𝑎𝑛−1 ≥ ∫  
𝑛

𝑛−1
 𝑓(𝑥)𝑑𝑥 ≥ 𝑎𝑛   ………… (1) 

Replacing 𝑛 by 2,3,……… , 𝑛 in (1) and adding we obtain 

𝑎1 + 𝑎2 +⋯…+ 𝑎𝑛−1 ≥ ∫  
𝑛

1

𝑓(𝑥)𝑑𝑥 ≥ 𝑎2 + 𝑎3 +⋯ . . +𝑎𝑛 

∴ 𝑠𝑛 − 𝑎𝑛 ≥ 𝐼𝑛 ≥ 𝑠𝑛 − 𝑎1 where 𝑠𝑛 = 𝑎1 + 𝑎2 +⋯……+ 𝑎𝑛 

∴ 𝑎1 ≥ 𝑠𝑛 − 𝐼𝑛 ≥ 𝑎𝑛 

Now, since 𝑓 is non-negative, 𝑓(𝑛) = 𝑎𝑛 ≥ 0. 

∴ 𝑎1 ≥ 𝑠𝑛 − 𝐼𝑛 ≥ 0. 

Now, let 𝑠𝑛 − 𝐼𝑛 = 𝐴𝑛. 

∴ 𝑎1 ≥ 𝐴𝑛 ≥ 0.     …………(2) 

∴ (𝐴𝑛) is a bounded sequence. 

Also 𝐴𝑛+1 − 𝐴𝑛 = 𝑠𝑛+1 − 𝑠𝑛 − 𝐼𝑛+1 + 𝐼𝑛 

= 𝑎𝑛+1 −∫  
𝑛+1

𝑛

 𝑓(𝑥)𝑑𝑥

 ≤ 𝑎𝑛+1 −∫  
𝑛+1

𝑛

 𝑎𝑛+1𝑑𝑥

 ≤ 0

 

∴ 𝐴𝑛+1 ≤ 𝐴𝑛. 

∴ 𝐴𝑛 is a bounded monotonic decreasing sequence. 

∴ lim𝐴𝑛 = lim(𝑠𝑛 − 𝐼𝑛) exists. 

∴ lim
𝑛→−∞

 𝑠𝑛 exists iff lim𝐼𝑛 exists and lim𝐴𝑛 = 𝑠 − 𝐼     ………..(3) 
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where 𝑠 is the sum of the series and 𝐼 = lim
𝑛→−∞

 𝐼𝑛. 

∴ The series ∑𝑓(𝑛) converges iff the sequence (𝐼𝑛) converges.  

In this case from (2) 𝑎1 ≥ lim𝐴𝑛 ≥ 0. 

∴ 𝑎1 ≥ 𝑠 − 𝐼 ≥ 0  (by (3))

 ∴ 𝐼 + 𝑎1 ≥ 𝑠 ≥ 𝐼.

 ∴ 𝐼 + 𝑓(1) ≥ 𝑠 ≥ 𝐼.

 

Problem 1: 

 Show that lim
𝑛→−∞

  (1 +
1

2
+

1

3
+⋯… .+

1

𝑛
− log 𝑛) exists and lies helwecn 0 a and 1. (This 

limit is known as Euler's constant and denoted by v ).  

Solution:  

Consider the function 𝑗(𝑥) = 1/𝑥 defined on [1,∞). Clearly 𝑓(𝑥) is non-negative and 

monotonic decreasing. 

𝐼𝑛 = ∫  
𝑛

1

1

𝑥
𝑑𝑥 = log 𝑛. 

Let 𝑓(𝑛) = 𝑎𝑛 = 1/𝑛. 

∴ 𝑠𝑛 − 𝐼𝑛 = 1+
1

2
+

1

3
+⋯… .+

1

𝑛
− log 𝑛. 

Now by Cauchy's integral test 𝑠𝑛 − 𝐼𝑛 converges and its limit lies belween 0 and 𝒂1. 

 But 𝑎1 = 𝑓(1) = 1 

∴ lim
𝑛→∞

  (1 +
1

2
+⋯……+

1

𝑛
− log 𝑛) exists and lies between 0 and 1. 

Problem 2: 

 Discuss the convergence of the series ∑  ∞
𝑛=2

1

𝑛(log 𝑛)𝑎
 where 𝒙 ≥ 0. 

Solution:  

Let 𝑎𝑛 =
1

𝑛(log 𝑛)𝑎
𝛼 ≥ 0, 𝑛 ≥ 2. 

Consider the function 𝑓(𝑥) =
1

𝑥(log 𝑥)𝑎
 so that 𝑓(𝑛) = 𝑎𝑛. 

Clearly 𝑓(𝑥) is non-negative and monotoaic decreasing on [2,∞). 

Case (i) Let 𝛼 ≠ 1. 

∴ 𝐼𝑛 = ∫  
𝑛

2

 
𝑑𝑥

𝑥(log 𝑥)𝛼

 = [
1

1 − 𝛼
(log 𝑥)1−𝛼]

2

𝑛

 =
(log 𝑛)1−𝛼

1 − 𝛼
−
(log 2)1−𝛼

1 − 𝛼
,
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∴ (𝐼𝑛) converges if 𝛼 > 1 and diverges if 𝛼 < 1. 

Hence by Cauchy's integral test, the given series converges if 𝛼 > 1 and  

diverges if 𝛼 < 1. 

Case (ii) Let 𝛼 = 1. 

∴ 𝐼𝑛 = [log (log 𝑥)]2
𝑛 

= [log (log 𝑛) − log (log 2)] → ∞  as 𝑛 → ∞. 

∴ (𝐼𝑛) diverges and bence the given series diverges. 

Problem 3: 

Using the integral test discuss the convergence of the series ∑𝑛𝑒−𝑛
2
 

Solution:  

Let 𝑎𝑛 = 𝑛𝑒
−𝑛2. 

Consider the function 𝑓(𝑥) = 𝑥𝑒−𝑥
2
 so that 𝑓(𝑛) = 𝑎𝑛. Clearly 𝑓(𝑥) is non-negative and 

monotonic decreasing on [1,∞). 

 Also 𝐼𝑛 = ∫  
𝑛

1

 𝑥𝑒−𝑥
2
𝑑𝑥.

 =
1

2
(𝑒−1 − 𝑒−𝑛

2
).

 ∴ 𝐼𝑛 →
1

2
𝑒−1 as 𝑛 → ∞.

 

∴ By Cauchy's integral test, the given series is convergent and its suml lics between 
1

2
𝑒−1 and 

3

2
𝑒−1. 

Exercises. 

1. Show that the series ∑
1

𝑛
 converges if 𝑝 > 1 and diverges if 𝑝 ≤ 1 and in case of 

convergence the sum lies between 
1

𝑝−1
 and 

𝑝

𝑝−1
. 

2. Discuss the convergence of the following series using Cauchy's integral test. 

(i) ∑  ∞
1

1

𝑛2+1
                          (ii) ∑  ∞

1
1

𝑛(log 𝑛)2
 

(iii) ∑  ∞
3

1

𝑛log 𝑛(log log 𝑛)2
     (iv) ∑  ∞

1
1

(𝑛+1)2
 

(v) ∑  ∞
1

𝑛4

2𝑛5+3
                       (vi) ∑  ∞

1
1

𝑛(𝑛+1)
 

(vii) ∑  ∞
1

1

√(𝑛2−1)
. 
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Unit V 

Series of Arbitrary terms: Alternative series – Absolute convergence – Tests for convergence 

of series of arbitrary terms.  

Chapter 5: Sections   5.1 - 5.3 

 

5.Series of Arbitrary Terms: 

So far we have been dealing with series of positive terms. We now consider series in which 

the terms are not necessarily positive. 

5.1 Alternating Series: 

Definition. A series whose terms are alternatively positive and-negative is called an 

alternating series. 

Thus an altering series is of the form 

𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 +⋯……… . . . . . . . . . . . = Σ(−1)𝑛+1𝑎𝑛 where 𝑎𝑛 > 0 for all 𝑛. 

For example 

(i) 1 −
1

2
+

1

3
−

1

4
+⋯… = ∑  (−1)𝑛+1 (

1

𝑛
) is an alternating series. 

(ii) 2 −
3

2
+

4

3
−

5

4
+⋯ . .= ∑  (−1)𝑛+1 (

𝑛+1

𝑛
) is an alternating series. 

We now prove a test for convergence of an alternating series. 

Theorem 1: (Leibnitz's test) 

Let Σ(−1)𝑛+1𝑎𝑛 be an alternating series whose terms 𝑎𝑛 satisfy the following conditions (i) 

(𝑎𝑛) is a monotonic decreasing sequence. 

(ii) lim
𝑛→∞

 𝑎𝑛 = 0. 

Then the given alternating series converges. 

Proof:  

Let ( 𝑠𝑛 ) denote the sequence of partial sums of the given series. 

Then 𝑠2𝑛 = 𝑎1 − 𝑎2 + 𝑎3 − 𝑎1 +   +𝑎2𝑛−1 − 𝑎2𝑛 

𝑠2𝑛+2 = 𝑠2𝑛 + 𝑎2𝑛+1 − 𝑎2𝑛+2 

∴ 𝑠2𝑛+2 − 𝑠2𝑛 = (𝑎2𝑛+1 − 𝑎2𝑛+2) ≥ 0 (by (i)). 

∴ 𝑠2𝑛+2 ≥ 𝑠2𝑛. 

∴ (𝑠2𝑛) is a monotonic increasing sequence. 

Also 𝑠2𝑛 = 𝑎1 − (𝑎2 − 𝑎3) − (𝑎4 − 𝑎5) −⋯… .−(𝑎2𝑛−2 − 𝑎2𝑛−1) − 𝑎2𝑛 ≤ 𝑎1 by (i). 

∴ (𝑠2𝑛) is bounded above. 
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∴ (𝑠2𝑛) is a convergent sequence 

Let (𝑠2𝑛) → 𝑠. 

Now, 𝑠2𝑛+1 = 𝑠2𝑛 + 𝑎2𝑛+1. 

∴ lim𝑛→−  𝑠2𝑛+1 = lim𝑛→∞  𝑠2𝑛 + lim𝑛→∞  𝑎2𝑛+1 

= 𝑠 + 0 = 𝑠. (𝑏𝑦(ii)) 

∴ (𝑠2𝑛+1) → 𝑠 

Thus the subsequences (𝑠2𝑛) and (𝑠2𝑛+1) converge to the same limits. 

∴ (𝑠𝑛) → 𝑠 (by sec 2.3 theorem 2). 

∴ The given series converges. 

Note: 

In the above theorem if lim𝑛−∞  𝑎𝑛 = 𝑎 ≠ 0, then lim𝑛−∞𝑠2𝑛   = s and lim𝑛−∞ 𝑠2𝑛+1 = 𝑠 + 𝑎. 

Hence the sequence (𝑠𝑛) cannot converge. Further (𝑠𝑛) is  𝑎 bounded sequence. Hence (𝑠𝑛 ) 

oscillates. 

∴ The given series oscillates. 

Problem 1:  

Show that the series 1 −
1

2
+

1

3
−

1

4
+⋯……  converge. 

Solution:  

The given series is Σ(−1)𝑛+1𝑎𝑛 where 𝑎𝑛 = 1/𝑛  

Clearly 𝑎𝑛 > 𝑎𝑛+1, for all 𝑛 and hence (𝑎𝑛) is monotonic decreasing. 

Also lim𝑛→∞  𝑎𝑛 = lim𝑛→∞  
1

𝑛
= 0. 

∴ By Leibnitz's tesi the given series converges. 

Problem 2:  

Show that the series Σ
(−1)𝑛+1

log (𝑛+1)
 converges . 

Solution: 

Let 𝑎𝑛 =
1

log (𝑛+1)
. 

Clearly (𝑎𝑛) → 0 as 𝑛 → ∞. 

Also 
1

log 𝑛
>

1

log (𝑛+1)
 for all 𝑛 ≥ 2. 

∴ By Leibnitz's test the given series converges. 
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Problem 3: 

Show that the series Σ(−1)𝑛+1
𝑛

3𝑛−2
 oscillates. 

Solution:  

Let 𝑎𝑛 =
𝑛

3𝑛−2
. 

Clearly 𝑎𝑛 > 𝑎𝑛+1 for all 𝑛. 

Also lim𝑛→∞  
n

3𝑛−2
=

1

3
. 

∴ The given series oscillates. 

Problem 4: 

Show that the following series converges  

1

23
−

1

33
(1 + 2) +

1

43
(1 + 2 + 3) −

1

53
(1 + 2 + 3_4)+……… 

Solution:  

Let 𝑎𝑛 =
1+2+3+⋯……+𝑛

(n+1)3
 

=
𝑛(𝑛 + 1)

2(n + 1)3
 

=
𝑛

2(n + 1)2
 

Clearly 𝑎𝑛 > 𝑎𝑛+1, for all n. 

Also lim𝑛→∞𝑎𝑛 = lim𝑛→∞
𝑛

2(n+1)2
 

= lim𝑛→∞

1

2n(1 + 1/n)2
= 0 

∴ By Leibnitz's test the given series converges. 

Exercises: 

(1) ∑
(−1)𝑛(1+𝑛2)

1+𝑛3
   

 (2) ∑(−1)−(1+
1

𝑛
)
 

(3) 1 −
1

3
(1 +

1

2
) +

1

5
(1 +

1

2
+

1

3
) −

1

8
(1 +

1

2
+

1

3
+

1

2
) + ⋯…… ..   

(4) 1 − (
1

22
+

1

32
) + (

1

42
+

1

52
+

1

62
+

1

72
) + ⋯…… ..   

(5) ∑
(−1)𝑛−1

√𝑛
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(6) ∑
(−1)−2log (𝑛+1)

(𝑛+1)−2
  

(7) ∑
(−1)𝑛𝑛

2𝑛−1
 

(8) ∑
(−1)𝑛−1𝑛

5𝑛
. 

(9) 
𝑥

1+𝑥
−

𝑥2

1+𝑥2
+

𝑥3

1+𝑥3
−   

(10) ∑(−1)𝑛sin (
1

𝑛
). 

5.2. Absolute Convergence: 

Definition: 

A series Σ𝑎𝑛 is said to be absolutely convergert if the series ∑|𝑎𝑛| is convergent. . 

Examples. 

1. The series ∑
(−1)𝑛

𝑛2
 is absolutely convergent, for, ∑ |

(−1)𝑛

𝑛2
| = ∑

1

𝑛2
 which is convergent. 

2. The series ∑
(−1)𝑛

𝑛
 is not absolutely convergent for, ∑ |

(−1)𝑛

𝑛
| = ∑

1

𝑛
 is divergent. 

However, the given series is convergent (by problem 1 of 5.1). 

Note: 

If Σ𝑎𝑛 is a convergert sories of positive temms them Σ𝑎𝑛 is absolutely convergent. 

Theorem 1: 

Any absolutely convergent series is convergent. 

Proof: 

Let Σ𝑎𝑛 be absolutely convergent . 

∴ Σ̇|𝑎𝑛| is convergent. 

Let 𝑠𝑛 = 𝑎1 + 𝑎2 +⋯…… . . +𝑎𝑛 and 𝑡𝑛 = |𝑎1| + |𝑎2| + ⋯………+ |𝑎𝑛| 

By hypothesis (𝑙𝑛) is convergent and hence is a Cauchy sequence. 

Hence given 𝜀 > 0, there exists 𝑛1𝜀𝑁 such that 

 |𝑡𝑛 − 𝑡𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑛1  ………(1) 

Now let 𝑚 > 𝑛. 

Then |𝑠𝑛 − 𝑠𝑚| = |𝑎𝑛+1 + 𝑎𝑛+2 +⋯…………+ 𝑎𝑚| 

 ≤ |𝑎𝑛+1| + |𝑎𝑛+2| + ⋯…… . . . . . . +|𝑎𝑚|

 = |𝑡𝑛 − 𝑡𝑚|

 < 𝜀 for all 𝑛,𝑚 ≥ 𝑛1( by (1)).
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∴ (𝑠𝑛) is a Cauchy sequence in 𝐑 and hence is convergent.. 

∴ Σ𝑎𝑛 is a convergent series. 

Note 1: 

The converse of the above theorem is not true. For example, the series ∑  (−1)𝑛
1

𝑛
 is 

convergent. However ∑  
1

𝑛
 is divergent so that the series is not absolutely convergent. 

Note 2:  

Since Σ|𝑎𝑛| is a series of positive terms, the tests developed in chapter 4 for series of positive 

terms can be used to test the absolute convergence of a given series. 

Definition:  

A series. ∑  𝑎𝑛 is said to be conditionally convergent if it is convergent but not absolutely 

convergent. 

Example: 

The series ∑  
(−1)𝑛

𝑛
 is conditionally convergent. 

Theorem 2: 

 In an absolutely convergent series, the series formed by its positive terms alone is convergent 

and the series formed by its negative terms alone is convergent and conversely. 

Proof: 

 Let ∑  𝑎𝑛 be the given absolutely convergent series. 

We define 𝑝𝑛 = {
𝑎𝑛 if 𝑎𝑛 > 0
0     if 𝑎𝑛 ≤ 0 

 and 

 𝑞𝑛 = {
0 if 𝑎𝑛 ≥ 0

−𝑎𝑛 if 𝑎𝑛 < 0
 

(i,e) 𝑝𝑛 is a positive term of the given series and 𝑞𝜋 is the modulus of a negative term 

∴ Σ𝑝𝑛 is the series formed with the positive terms of the given series and Σ𝑞𝑛 is the series 

formed with the moduli of the negative terms of the given series. 

Clearly 𝑝𝑛 ≤ |𝑎𝑛| and 𝑞𝑛 ≤ |𝑎𝑛| for all 𝑛. 

Since the given series is absolutely convergent, Σ|𝑎𝑛| is a convergent series of positive terms. 

Hence by comparison test Σ𝑝𝑛 and Σ𝑞𝑛 are convergent. 

Conversely Σ𝑝𝑛 and Σ𝑞𝑛 converge to 𝑝 and 𝑞 respectively. We claim that ∑  𝑎𝑛 is absolutely 

convergent. 

We have |𝑎𝑛| = 𝑝𝑛 + 𝑞𝑛 
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∴ Σ|𝑎𝑛| = Σ(𝑝𝑛 + 𝑞𝑛)

 = Σ𝑝𝑛 + Σ𝑞𝑛
 = 𝑝 + 𝑞

 

∴ Σ𝑎𝑛 is absolutely convergent. 

Theorem 3: 

 If Σ𝑎𝑛 is an absolutely convergent scries and (𝑏𝑛) is a bounded sequence, then the series 

∑  𝑎𝑛𝑏𝑛 is an absolutely convergent series. 

Proof: 

Since (𝑏𝑛) is a bounded sequence, there exists a real number 𝑘 > 0  

such that |𝑏𝑛| ≤ 𝑘 for all 𝑛. 

∴ |𝑎𝑛𝑏𝑛| = |𝑎𝑛||𝑏𝑛| ≤ 𝑘|𝑎𝑛| for all 𝑛. 

Since ∑  𝑎𝑛 is absolutely convergent Σ|𝑎𝑛| is convergent. 

∴ Σ𝑘|𝑎𝑛| is convergent 

∴ By comparison test Σ|𝑎𝑛𝑏𝑛| is convergent. 

∴ Σ𝑎𝑛𝑏𝑛 is absolutely convergent. 

Problem 1: 

Test for convergence of the series ∑  
(−1)𝑛

𝑛𝑝
. 

Solution:  

Case (i) Let 𝑝 > 1. 

Then ∑  |
(−1)𝑛

𝑛𝑝
| = ∑  

1

𝑛𝑝
 is convergent. 

∴ The given series is absolutely convergent and hence convergent. 

 Case (ii) Let 0 < 𝑝 ≤ 1.  

Then (
1

𝑛𝑝
) is a monotonic decreasing sequence converging to 0 . 

∴ By Leibnitz's test the given series converges. 

absolute convergence 

In this case the convergence is not absolute since ∑  
1

𝑛0
 diverges 

when 0 < 𝑝 ≤ 1. 

Case (iii) Let 𝑝 = 0. Then the series reduces to −1+ 1 − 1 +   which oscillates finitely. 

Case (iv) Let 𝑝 < 0. Then the sequence (
1

𝑛𝑝
) is unbounded. Hence the given scrics oscillates 

infinitely. 
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Problem 2:  

Show that the series Σ(−1)𝑛 [√(𝑛2 + 1) − 𝑛] is conditionality convergent. 

Solution:  

Let 𝑎𝑛 = √(𝑛2 + 1) − 𝑛 =
1

√(𝑛2+1)+𝑛
 

Clearly (𝑎𝑛) is a monotonic decreasing sequence converging to 0. 

∴ By Leibnitz's test the given series converges. 

Now we prove that Σ |(−1)𝑛 (√(𝑛2 + 1) − 𝑛)| is divergent. 

|(−1)𝑛(√(𝑛2 + 1) − 𝑛)| = 𝑎𝑛 =
1

√(𝑛2+1)+𝑛
. 

Let 𝑏𝑛 = 1/𝑛. 

∴
𝑎𝑛

𝑏𝑛
=

𝑛

√(𝑛2+1)+𝑛
=

1

√(1+
1

𝑛2
)+1

. 

∴ lim
𝑛→∞

 
𝑎𝑛

𝑏𝑛
=

1

2
. 

∴ By comparison test ∑  𝑎𝑛 is divergent. 

∴ The given series is not absolutely convergent. 

∴ The given series is conditionally convergent. 

series of arbitrary terms 

Problem 3:  

Show that the series ∑  
𝑥𝑛−1

(𝑛−1)!
 converges absolutely for all values of 𝑥. 

Solution: 

Let 𝑎𝑛 =
𝑥𝑛−1

(𝑛−1)!
. 

∴ |
𝑎𝑛
𝑎𝑛+1

| =
𝑛

|𝑥|
 

∴ lim𝑛→∞   |
𝑎𝑛

𝑎𝑛+1
| = ∞ for all 𝑥 ≠ 0. 

∴ By ratio test the series ∑ |
𝑥𝑛−1

(𝑛−1)!
| is convergent for all 𝑥 ≠ 0 and the convergence is trivial 

for 𝑥 = 0. 

∴ The series converges absolutely for all 𝑥. 
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Problem 4: 

Test the convergence of ∑
(−1)𝑛sin 𝑛𝛼

𝑛3
 

Solution:  

We have |
(−1)𝑛sin 𝑛𝛼

𝑛3
| ≤

1

𝑛3
 ( since |sin 𝜃| ≤ 1). 

∴ By comparison test the series is absolutely convergent. 

Exercises. 

1. Discuss the convergence of the following series. 

(a) ∑
𝑎+(−1)𝑛

𝑛2
, 𝑎 ∈ 𝐑. 

(b) ∑
(−1)𝑛𝑥𝑛

log (𝑛+1)
 

(c) ∑(−1)𝑛 {
1

𝑛2
+

1

(𝑛+1)2
} 

(d) ∑
(−1)𝑛(𝑛+2)

2𝑛+5
 

(e) ∑
(−1)𝑛cos 𝑛𝛼

𝑛√𝑛
 

(f) (
1

2
)
2

− (
1.3

2.4
)
2

+ (
1⋅3⋅5

2⋅4⋅6
)
2

− 

(g) ∑
(−1)𝑛𝑥𝑛

1+𝑛𝑎
 

2. Show that in a conditionally convergent series the series formed by its positive terms 

alone is divergent and the series formed by its negative terms 

also is divergent. 

5.3.Tests for Convergence of Series of Arbitrary Terms: 

Some tests for establishing the convergence of series of arbitrary terms are given in this 

section. 

Theorem 1: 

Let (𝑎𝑛) be a bounded sequence and (𝑏𝑛) be a monotonic decreasing bounded sequence. 

Then the series Σ𝑎𝑛(𝑏𝑛 − 𝑏𝑛+1) is absolutely convergent. 

Proof:  

Since (𝑎𝑛) and (𝑏𝑛) are bounded sequences there exists a real number 𝑘 > 0 such that 

|𝑎𝑛| ≤ 𝑘 and |𝑏𝑛| ≤ 𝑘 for all 𝑛. 

Let 𝑠𝑛 denote the partial sum of the series Σ|𝑎𝑛(𝑏𝑛 − 𝑏𝑛+1)|. 
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∴ 𝑠𝑛 = ∑  

𝑛

𝑟=1

  |𝑎𝑟(𝑏𝑟 − 𝑏𝑟+1)|

 =∑  

𝑛

𝑟=1

  |𝑎𝑟|(𝑏𝑟 − 𝑏𝑟+1) ( since 𝑏𝑟 > 𝑏𝑟+1 for all 𝑟)

 ≤ 𝑘∑  

𝑛

𝑟−1

  (𝑏𝑟 − 𝑏𝑟+1)

 = 𝑘(𝑏1 − 𝑏𝑛+1)

 ≤ 𝑘(|𝑏1| + |𝑏𝑛+1|)

 ≤ 𝑘(𝑘 + 𝑘) = 2𝑘2.

 

∴ (𝑠𝑛) is a bounded sequence. 

∴ ∑  |𝑎𝑛(𝑏𝑛 − 𝑏𝑛+1)| is convergent. 

∴ ∑  𝑎𝑛(𝑏𝑛 − 𝑏𝑛+1) is absolutely convergent. 

Theorem 2: (Dirichlet's test) 

Let ∑  𝑎𝑛 be a series whose sequence of partial sums (𝑠𝑛) is bounded Let (𝑏𝑛) be a 

monotonic decreasing sequence converging to 0 . Then the series Σ𝑎𝑛𝑏𝑛 converges. 

Proof: 

Let 𝑡𝑛 denote the partial sum of the series ∑  𝑎𝑛𝑏𝑛. 

∴ 𝑡𝑛 = ∑  

𝑛

𝑟=1

 𝑎𝑟𝑏𝑟

 = 𝑠1𝑏1 +∑  

𝑛

𝑟=2

  (𝑠𝑟 − 𝑠𝑟−𝑖)𝑏𝑟  ( since 𝑠𝑟 − 𝑠𝑟−1 = 𝑎𝑟)

 

= ∑  𝑛
𝑟=2   𝑠𝑟(𝑏𝑟 − 𝑏𝑟+1) + 𝑠n𝑏n    …………. (1) 

Since (𝑠𝑛) is bounded and (𝑏𝑛) is a monotonic decreasing bounded n-1 sequence 

∑  𝑛−1
𝑟=1 𝑠𝑟(𝑏𝑟 − 𝑏𝑟+1) is a convergent sequence (by theorem 1) 

Also since (𝑠𝑛) is bounded and (𝑏𝑛) → 0, (𝑠𝑛𝑏𝑛) → 0. 

(by problem 4 of 1.6). 

∴ From (1) it follows that (𝑡𝑛) is convergent. 

∴ ∑  𝑎𝑛𝑏𝑛 is convergent. 

Note: 

Leibnitz's test for alternating series proved in 5.1 is a particular case of Dirichlet's test. For, 

consider the alternating series Σ(−1)𝑛𝑎𝑛 where ( 𝑎𝑛 ) is a monotonic decreasing sequence 
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converging to zero. The sequence of partial sums of Σ(−1)𝑛 is obviously a bounded 

sequence. 

Hence by Dirichlet's test Σ(−1)𝑛𝑎𝑛 converges. 

Theorem 3: (Abel's test) 

Let ∑  𝑎𝑛 be a convergent series. Let (𝑏𝑛) be bounded monotonic sequence. Then ∑  𝑎𝑛𝑏𝑛 is 

convergent 

Proof:  

Since (𝑏𝑛) is a bounded monotonic sequence; (𝑏𝑛) → 𝑏 (say) 

Let 𝑐𝑛 = {
𝑏 − 𝑏𝑛 if (𝑏𝑛) is monotonic increasing 

𝑏𝑛 − 𝑏 if (𝑏𝑛) is monotonic decreasing 
 

𝑎𝑛𝑐𝑛 == {
𝑎𝑛𝑏 − 𝑎𝑛𝑏𝑛 if (𝑏𝑛) is monotonic increasing 

𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏 if (𝑏𝑛) is monotonic decreasing 
 

𝑎𝑛𝑏𝑛 = {
𝑎𝑛𝑏 − 𝑎𝑛𝑐𝑛 if (𝑏𝑛) is monotonic increasing 

b 𝑎𝑛 + 𝑎𝑛𝑐𝑛 if (𝑏𝑛) is monotonic decreasing 
.  …………..(1) 

Clearly (𝑐𝑛) is a monotonic decreasing sequence converging to 0 . 

Also since ∑𝑎𝑛 is a convergent series its sequence of partial sums is bounded. 

∴ By Dirichlet's test ∑𝑎𝑛𝑐𝑛 is convergent. 

Also ∑�̇�𝑛 is convergent. 

∴ Σ𝑏𝑎𝑛 is convergent. 

∴  By(1),∑𝑎𝑛𝑏𝑛 is convergent. 

Problem 1: 

Show that convergence of ∑𝑎𝑛 implies the convergence of ∑
𝑎𝑛

𝑛
. 

Solution: 

Let Σ𝑎𝑛𝑏𝑒 convergen. 

The sequence (
1

𝑛
) is a bounded monotonic sequence. 

Hence by Abel's test ∑
𝑎𝑛

𝑛
 is convergent. 

Problem 2: 

Show that the series ∑
sin 𝑛𝜃

𝑛
 converges for all values of 𝜃 and ∑

cos 𝑛𝜃

𝑛
 converges if 𝜃 is not a 

multipic of 2𝜋. 

Solution:  
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Consider the series ∑
sin 𝑛𝜃

𝑛
. 

Let 𝑎𝑛 = sin 𝑛𝜃 and 𝑏𝑛 = 1/𝑛. 

Clearly (𝑏𝑛) is a monotonic decreasing sequence converging to 0 .  

Now, 𝑠𝑛 = sin 𝜃 + sin 2𝜃 +⋯… . .+sin 𝑛𝜃 

=
1

2
cosec

𝜃

2
[2sin 𝜃sin 

𝜃

2
+⋯… . .+2sin 𝑛𝜃sin 

𝜃

2
] 

=
1

2
cosec

𝜃

2
[(cos 

𝜃

2
− cos 

3𝜃

2
) +⋯⋯+ (cos (

2𝑛 − 1

2
)𝜃 − cos 

2𝑛 + 1

2
𝜃)] 

=
1

2
cosec

𝜃

2
[cos 

𝜃

2
− cos (

2𝑛 + 1

2
) 𝜃] 

∴ |𝑠𝑛| = |
1

2
cosec

𝜃

2
| |cos 

𝜃

2
− cos (

2𝑛 + 1

2
)𝜃| 

=
1

2
|cosec

𝜃

2
| [|cos 

0

2
| + |cos (

2𝑛 + 1

2
) 𝜃|] 

≤
1

2
|cosec

𝜃

2
| × 2 = |cosec

𝜃

2
| 

∴ |𝑠𝑛| ≤ |cosec
𝜃

2
|. 

∴ (𝑠𝑛) is a bounded sequence when 𝜃 is not a multiple of 2𝜋 

∴ By Dirichlet's test ∑𝑎𝑛𝑏𝑛 = ∑
sin 𝑛𝜃

𝑛
 converges when 𝜃 is not a multiple of 2𝜋. 

When 𝜃 is a multiple of 2𝜋, the series ∑
sin 𝑛𝜃

𝑛
 reduces to 0 + 0 + 0 +   which trivially 

converges to 0 . 

∴ ∑
sin 𝑛𝜃

𝑛
 converges for all values of 0 . 

Now, we consider the series ∑
cos 𝑛𝜃

𝑛
. 

𝑠𝑛 = cos𝜃 + cos 2𝜃 + ⋯……+ cos𝑛𝜃   

=
1

2
cosec

𝜃

2
[sin 

2𝑛+1

2
𝜃 − sin 

𝜃

2
]. 

∴ |𝑠𝑛| ≤ |cosec
𝜃

2
|. 

∴ (𝑠𝑛) is a bounded sequence when 0 is not a multiple of 2𝜋. 

∴ By Dirichlet's test ∑
cos 𝑛𝜃

𝑛
 converges when 𝜃 is not nultiple of 2𝜋. 

When 0. is a multiple of 2𝜋, the series reduces 1 +
1

2
+

1

3
+ which diverges. 

∴ The series ∑
cos 𝑛𝜃

𝑛
 converges except when 𝜃 is a mullipl of 2𝜋. 
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Problem 3: 

Prove that ∑𝑛=2
∞   (

sin 𝑛

log 𝑛
) is convergent. 

Solution: 

Let 𝑎𝑛 = sin 𝑛 and 𝑏𝑛 = 1/log 𝑛. 

Clearly (𝑏𝑛) is a monotonic decreasing sequence converging to 0 .  

𝑠𝑛 = sin 2 + sin 3 +⋯……+ sin (𝑛 + 1) 

=
1

2
cosec

1

2
[cos (

3

2
) − cos (

2𝑛+3

2
)] (as in problem 2) 

∴ |𝑠𝑛| ≤ cosec (
1

2
) 

∴ (𝑠𝑛) is a bounded sequence. 

By Dirichlet's test ∑𝑛=2
∞   (

sin 𝑛

log 𝑛
) converges. 

Problem 4: 

Discuss the convergence of the series ∑(1 +
1

2
+⋯…+

1

𝑛
)
sin 𝑛𝜃

n
. 

Solution: 

Let 𝑏𝑛 = (
1

𝑛
(1 +

1

2
+⋯…+

1

𝑛
)) 

And 𝑎𝑛 = sin 𝑛 𝜃 

As in problem 1, the partial sum 𝑠𝑛  of the series ∑sin 𝑛𝜃 is bounded except when 𝜃 is a 

multiple of 2𝜋. 

Now since 
1

𝑛
 is a monotonic decreasing sequence 

1

𝑛
(1 +

1

2
+⋯…+

1

𝑛
) is also a monotonic 

decreasing sequence (refer problem 1 of 1.3) 

Also by Cauchy’s first limit theorem 

 (
1

𝑛
(1 +

1

2
+⋯…+

1

𝑛
)) → 0. 

∴ By Dirichlet's test, the given series converges except when 0 is a multiple of 2𝜋. 

When 𝜃 is a multiple of 2𝜋, the series reduces to 0 + 0 +⋯.. which converges to zero. 

∴ The givenseries converges for all values of 0 . 

Exercises: 

1. Show that the convergence of Σ𝑎𝑛 ⇒ the convergence of 

(i) ∑  
𝑎𝑛

log 𝑛
 

(ii) ∑  
𝑛+1

𝑛
𝑎𝑛 
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(iii) Σ𝑛1/𝑛𝑎𝑛 

(iv) ∑  (1 +
1

𝑛
)
𝑛

𝑎𝑛 

2. Show that the series ∑  (1 +
1

2
+⋯ . .+

1

𝑛
)
cos 𝑛𝜃

𝑛
 converges except when  is multiple of 2𝜋. 
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