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Unit |

Sequences - Bounded sequences - Monotonic Sequences — Convergent Sequences — Divergent
and Oscillating Sequences — The Algebra of limits.

Chapter 1: Sections 1.1 - 1.7

1.Sequences:

1.1 Introduction:

A great deal of analysis is concerned with sequences and series. Consider the following

collection of real numbers given by 1,

N |

g e e In this collection the first element is 1

, the second element is % the third element is § and so on. This is an example of a sequence of

real numbers. We may think of a sequence as any arrangement of elements where we can say
which element is first, which is second, which is third and so on. In other words the elements
of a sequence are labelled with the elements of N preserving their order. In general such a
labelling can be done by means of a function f whose domain is N. If the range of f is a subset

of an arbitray set X, we get a sequence of elements of X. Throughout this chapter we deal with

sequences of real numbers.

1.2. Sequences:

Definition:

Let f: N — R be a function and let f(n) = a,. Then a,, a,, as, ... ...., ay, ..... is called the

sequence in R determined by the function f and is denoted by (a,,).a, is called the n™ term

of the sequence.
The range of the function f, which is a subset of R, is called the range of the sequence.
Examples:

1. The function f: N — R given by f(n) = n determines the sequence 1,2,3, ,n,...

2. The function f: N — R given by f(n) = n? determines the sequence
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10.

11.

12.

13.

— ==

The function f: N — R given by f (n)—(

1)™ determines the sequence

—1,1,—-1,1, ... .... . Thus the terms of a sequence need not be distinct. The range of this
sequence is {1, —1}. Thus we see that the range of a sequence may be finite or
infinite.

The sequence ((—1)™*1) is given by 1, —1,1,—1 .... The range of this sequence is also
{1, —1}. However we note that the sequence ((—1)™) and ((—1)™*1) are different.
The first sequence starts with -1 and the second sequence starts with 1.

The constant function f: N — R given by f(n) = 1 determines the sequence 1,1,1,
Such a sequence is called a constant sequence.

) _ Znifnis even _
The function f: N — R given byf(n) =42 determines the
5(1 —n) if nis odd
sequence 0,1,—1,2, -2, ... ... ,M, =N, The range of this sequence is Z.

The function f: N - R given by f(n) = # determines the sequence

N | =

2 3
,g,z, ......... ,

The function f: N — R given by f(n) = %determines the sequence

11 1
L=, o, = e e
2°3 n

The function f: N — R given by f(n) = 2n + 3 determines the sequence

Let x € R. The function f: N — R given by f(n) = x™~* determines the geometric
sequence 1,x,x2, ......,x", ......
The sequence (—n) is given by —1,—-2,-3, ... ... ,—n, .... The range of this sequence is

the set of all negative integers.

A sequence can also be described by specifying the first few terms and stating a rule
for determining a,, in terms of the previous terms of the sequence. For example, let
a; =1,a,=1anda, = a,_; + an_y.

Then a; =a, +a, = 2;a, = az + a, = 3 and so on. we thus obtain the sequence

1,1,2,3,5,8,13, ..... . This sequence is called Fibonacci's sequence.

Let a; = V2 and a,,,, = /(2 + a,,). This defines the sequence v2, | (2 + V2), ... ...
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Exercises 1:

1. Write the first five terms of each of the following sequences.

@ (5F) ®E0-5) 06D O (5F)

. n ifn
@ (1 =" ) ) (znzi) (@) (n) (h) f(n) = nis odd is even.
n 1/n  ifn

(a,=1and a,q =/ (2 +ay)

2. Determine the range of the following sequences.

@@ (b)@2n) () @n-1) (d)A+ =DM

(e) The constant sequence a, a, a,

) F(n) = {1 if n is odd

1/nif nis even

(@ f(n) = [%] whert : denotes the integral part of x.

1.3. Bounded Sequences:

Definition:

A sequence (a,,) is said to be bounded above if there exist a real number k such that
a, < k forall n € N. Then k is called an upper bound of the sequence (a,,).

A sequence (a,,) is said to be bounded below if there exists a real number k such that a,, = k

for all n. Then k is called a lower bound of the sequence ( a,, ).

A sequence (a,) is said to be a bounded sequence if it is both bounded above and below.
Note:

A sequence ( a,, ) is bounded iff there exists a real number k > 0. that |a,,| < k for all n

Examples:
1. Consider the sequence 1%; . % ..... Here listhe l.u.b and O isthe g.L. b. Itis
a bounded sequence.
5
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2. The sequence 1,2,3,

g-l. b of the sequence.

3. The sequence —1,—-2,-3, ....., —n ..... is bounded above but not bounded below. -1 is

the L. u. b of the sequence.

4. 1,-1,1,—1,........ is a bounded sequence. 1 is the [. u.b. and -1 is the g.l. b of the

sequence.

5. Any constant sequence is a bounded sequence. Here l.u.b = g.l. b = the constant
term of the sequence.

Exercises:

1. Give examples of sequences (a,,) such that
(@) (a,,) is bounded above but not bounded below.
(b) (a,) is bounded below but not bounded above.
(¢) (a,,) is a bounded sequence.

(d) (a,) is neither bounded above nor bounded below.

2. Determine the L.u. b and g.l. b of the following sequences if they exist.
(@2,-21,-1,1,-1,

(9) (1 +n+n?)
(b) (=n?).
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1.4. Monotonic Sequences:
Definition:

A sequence (a,,) is said to be monotonic increasing if a,, < a,., forall n. (a, ) is said to be
monotonic decreasing if a,, = a,,, ' for all n. (a,,) is said to be strictly monotonic increasing
if a, < a,;, for all n and strictly monotonic decreasing if a,, > a,,; foralln.( a, ) is said

to be it is either monotonic increasing or monotonic decreasing.

Examples:

1. 1,2,2,3,3,3,4,4,4,4, ... is a monotonic increasing sequence.

2. 1,2,34,..... ,n, is a strictly monotonic increasing sequence.

1 - - . .
= is a strictly monotonic decreasing sequence.

yeunn Ty eenn
n

4. The sequence (a,) given by 1,—1,1,—1,1, .... is neither monotonic increasing nor

decreasing. Hence (a,,) is not a monotonic sequence.

2n-=7Y\ . .. .
5. (m) IS & monotonic Increasing sequence.

Proof a.. — a _2n-7 2(n+1)-7 -25
T N+l 7 342 3(n+1)+2 | (3n+2)(3n+5)

<0.~a, <apsq-

Hence the sequence is monotonic increasing.

6. Consider the sequence (a,,) where
(a) =1+ % + % + 4 % Clearly (a,) is a monotonic increasing sequence.
Note:

A monotonic increasing sequence (a,,) is bounded below and a, is the g.l. b of the sequence.
A monotonic decreasing sequence (a,,) is bounded ab ove and a, is the [.u. b of the

sequence.

Problem 1.

; ; : +az+-+ . .
Show that if (a,,) is a monotonic sequence then (%) is also a monotonic sequence.

Solution:
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Let (a,) be a monotonic increasing sequence.

Let (a,) be a
-‘-a1Sa2Sa3S---..SanS--- ............... (1)

b _ aijt+az+--+an
n n

a1+"'..+an+1 a1+“'..+an
b1 = bn = n+1 B n
_Mapy —(ag+ ot ay)
B n(n+1)
nay, — (@ +a, + .. +a,)
1
> D (by (1))
_ n(api1 — apn)
nn+1)
= 0. (by (1))
bn+1 = bn-

= (b,,) is monotoic increasing.
The proof is similar if (a,,) is monotonic decreasing.
Exercises.

1. Give an example of a sequence (a,,) such that (a,) is
(a) monotonic increasing and bounded above.
(b) monotonic increasing and not bounded above.
(c) monotonic decreasing and bounded below.

(d) monotonic decreasing and not bounded below.

2. Determine which of the following sequences are monotonic.
(a) (logn)
(b) ((=1)™*'n)

0+
0@
@)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



0 (5F)
(9) .6,.66,.666 (h)2,1.9,1.8,

3. If (a,) and (b,) are two monotonic increasing (decreasing) sequences show that

(a, + by,) is also monotonic increasing ( decreasing).

4. . If (a,) is monotonic increasing show that (1a,,) is increasing if A is positive and

(Aa,,) is decreasing if A is negative.

1.5. Convergent Sequences:

Consider the sequence 1,

N | =
w | =

. 1
 ve ann ey = wme wmees We observe that as n increases - approaches

)

zero. In fact by raking the value of n sufficiently large, we can bring % as close to 0 as we

want. This is roughly what we mean when we say that the sequence (1/n) converges to 0 or
0 is the limit of this sequence. This idea is formulated mathematically in the following

definition.
Definition:

A sequence ( a,, ) is said to converge to a number [ if given € > 0 there exists a positive
integer m such that |a,, — | < € for all n > m. We say that [ is the limit of the sequence and

we write lim a,, =lor (a,) - L
n-—oo

Note. 1.

(a,) — Liff given € > 0 there exists a natural number m such that a,, € (I — ¢,1 + ¢) for all
n = m (i.e.), All but a finite number of terms of the sequence lie within the interval (I —
gl+¢).

Note. 2

The above definition does not give any method of finding the limit of a sequence. In many
cases, by observing the sequence carefully, we can guess whether the limit exists or not and
also the value of the limit.

Theorem 1:

A sequence cannot converge to two different limits.

Proof:
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Let (a, ) be a convergent sequence.
If possible let [; and [, be two distinct limits of (a,,).

Let € > 0 be given. Since (a,) — l;, there exists a natural number n, such that
1
la, — ;| < 5¢€ foralln > n,
Since (a,,) — l,, there exists a natural number n, such lame Pri |a,, — [,| < %s foralln >
n,.

Let m = max{n,,n,}.

Then |ll - lzl = ”1 - am +am - l2|

~ |l; — I,| < € and this is true for every € > 0.

Clearly this is possible if and only if [; — [, = 0. Hence [; = L,.
Example 1:
. 1 1
Jim =000 (3) o
Proof:

Let € > 0 be given.
Then |2—o0|=2<eifn>2
n n &
Hence if we choose m to be any natural number such that m > ithen |% — 0| <egforalln>

m.

“lim—=20
n—-o n

10
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Note:

If e = 1/100, then m can be chosen to be any natural number grater than 100. In this

example the choice' of m depends on the given € and [1/¢] + 1 is the smallest value of m

that satisfies the requirements of the definition.
Example 2:

The constant sequence 1,1,1, ......... converges to 1.
Proof:

Let € > 0 be given.
Let the given sequence be denoted by (a,,).

Then a,, = 1 for all n.
“la,—1l=]1—-1]=0<eforalln €N
~ la, — 1| < & for all n = m where m can be chosen to be any natural number.

~lima, =1

n—->oo

Note:
In this example, the choice of m does not depend on the given «.

Example 3:

. n+1
lim —=1.
n-oo N

Proof:

Let € > 0 be given.

n+1
n

o 1221 = 2] = ]

1
=~ If we choose m to be any natural number greater than ~we have,

11
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n+1
‘ —1‘<£foralln2m

oo n+1
~ lim =

n—oo n

1

Example 4:

Let € > 0 be given.

Then

L _ol=X<l(si n
- O|—2n<n(smce2 >nforalln € N).

on O| < ¢ for all n = m where m is any natural number

greater than 1/¢

. nl_l)r_nooz—n =0

Example 5:
The sequence ((—1)™) is not convergent.

Proof:

Suppose the sequence ((—1)™) converges to L.

Then, given € > 0, there exists a natural number m such that |(—1)" — [| < ¢ forall n = m.

[ < & tor all nzm.
|(_1)m _ (_1)m+1| — |(_1)m —l+1- (_1)m+1|
<D™ =+ (=1)™ =]
<ete=2
But [(-1)™ — (=1)"™*!| = 2.
~» 2 < 2¢ie., 1 <e&whichis a contradiction since € > 0. arbitrary.

= The sequence ((—1)™) is not convergent.

12
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Theorem 2:

Any convergent sequence is a bounded sequence.
Proof:

Let ( a,, ) be a convergent sequence.

Let lima, = [.

n—-oo

Let € > 0 be given. Then there exists m € N such thatit |a,, — [| < e for all n = m.
aagl < || +eforalln =m

Now, let k = max{|a,|, |a,], ... ... am—1|, |1 + &)
Then |a,| < k for all n.

=~ (a,) is a bounded sequence.

Note:

The converse of the above theorem is not true. For example, the sequence ((—1)™) is a

bounded sequence. However, it is not a convergent sequence.

Exercises:

1. Prove that lim,,_,_ n—lz = 0.

2. Prove that lim,,_,_ (1 + %) =1.

2n+1

3. Prove that lim,,_,_ 1.

4. Prove that the following sequences are not convergent.
(@) (=1)"n).
(b) (n?).

1.6. Divergent and Oscillating Sequences:

We now proceed to classify sequences which are not convergent as follows.
1. Sequences diverging to co
2. Sequences diverging to —oo

13
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3. Finitely oscillating sequences.
4. Infinitely oscillating sequences.

Definition:

A sequence (a,,) is said to diverge to oo if given any real number k > 0, there exists m € N

such that a,, > k for all n = m. In symbols we write (a,,) = o or lim,,_,, a,, = oo.
Note:
(a,) — oo iff given any real number k > 0 there exists m € N

such that a,, € (k, o) forall n > m.

Example 1:
(n) — oo.
Proof.

Let k > 0 be any given real number.

Choose m to be any natural number such that m > k.
Thenn > k for all n > m.

s (n) - oo,

Example 2:
(n?) - oo
Proof:

Let k > 0 be any given real number.

Choose m to be any natural number such that m > Vk.

Thenn? > k foralln > m.
(nZ) - o0
Example 3:

(2") - oo.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Proof:

Let £ > 0 be any given real number.
Then 2™ > k < nlog?2 > logk.

< n > (logk)/log?2

Hence if we choose m to be any natural number such that m > (logk)/log 2, then 2™ > k

foralln > m.
s (2™) > oo,
Definition:

A sequence (a,,) is said to diverge to —oo if given any ral wisk k < 0 there exists m € N

such that a,, < k for all n = m. In symbols we write lim a,, = — or (a,) - —.
n—-0oo

Note:

(a,) » —oo iff given any real number k < 0, there exists m € N such
that a,, € (—oo, k) for alln > m.

A sequence (a,,) is said to be divergent if exists
(an) — oo or (an) - —0
Theorem 3:

(an) - oo iff (_an) - —,

proof:

Let (a,) — oo.
Let k < 0 be any given real number. Since (a,,) — o there exists

m € Nsuchthat a, > —k forall n > m.

s —ay, <kforalln >m

& (—a,) » —»

15
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Similarly we can prove that if (—a,) — —oot eﬂ;l (a,) = oo.

Examples.

The sequences (—n), (—n?) and (—2") diverge to —oo.
Theorem 4:

If (a,,) » w0 and a, # 0foralln € Nthen (1/a,) - 0.
Proof:

Let € > 0 be given. Since (a,) — o, there exists m € N such that a,, > 1/e foralln > m.

1
c—<c¢cforalln >m
aTl

<eforalln>=m

an

~ (1/a,) =0

Note. The converse of the above theorem is not true. For example, consider the sequence

(a,) where a,, = % Clearly (a,) — 0.

1 n . . .
Now (;) = ((—1)”) = —1,2,—-3,4, ..... which neither converges nor diverges to co or —oo.

Thus if a sequence (a,) — 0, then the sequence ( 1/a,, ) need not converge or diverge.

Theorem 5:

If (a,,) » 0and a, > 0 for, all n € N, then (1/a,) - oo.

Proof:

Let kK > 0 be any given real number. Since (a,,) — 0 there exists m € N such that |a, | <

1/k foralln = m..

o ap < 1/k for all n = m (since a, > 0)
~1/a, > kforalln > m.
- (1/a,) » oo.

Theorem 6:

Any sequence ( a,, ) diverging to oo is bounded below but not bounded above.

Proof:

16
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Let (a,,) = oo. Then for any given real number k > 0 there etiof m € N such that a,, > k for
alln = m.

= k is not an upper bound of the sequence (a,,).

= (a,) is not bounded above.

Now let [ = min{a,, a,, ...., a,,, k}.

From (1) we see that a,, > [ for all n.

= (a,) is bounded below.

Theorem 7:

Any sequence ( a,, ) diverging to —co is bounded above but not below.
Proof is similar to that of Theorem 6.

Note:

1. The converse of the above theorem is not true. For example, {i function, f: N — R defined

by
0 if n is odd
=11
fm) En if n 1s even
determines the sequence 0,1,0,2,0,3, ..... . which is bounded below ad not bounded above.

Also for any real number k > 0, we cannot find a natual number m such that a,, > k for all

n=m.

Hence this sequence does not diverge to co.

0 if n is odd

1 o determines the sequence
—5n if n is even

Similarly f:N — R given by f(n) = {

0,—1,0,—2,0, .... which is bounded above asd not bounded below. However this sequence

does not diverge to —oo.

2. By theorem 2 any convergent sequence is bounded. Hence by theorem 6 we see that any
convergent sequence cannot diverge to co. Similarly by theorem 7 it cannot diverge to —oo.
Also any sequence diverging to co cannot converge or diverge to —oo and any sequence

diverging to —co cannot converge or diverge to co. Thus the three behaviours of a sequence

namely convergence, divergence to co and divergence to —co are mutually exclusive.
17
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b B e

However these three types of behaviour of sequences are not exhaustive since there exist

sequences which neither converge nor diverge to oo nor diverge to —co.
Definition:

A sequence ( a,, ) which is neither convergent nor divergent to co of —oo is said to be an
oscillating sequence. An oscillating sequence which is bounded is said to be finitely

oscillating. An oscillating sequence which is unbounded is said to be infinitely oscillating.
Examples.

1. Consider the sequence ((—1)™). Since this sequence is bounded it cannot diverge to
oo or —oo (by theorems 6 and 7 ). Also this sequence is not convergent (by example 5

of 1.5). Hence ((—1)*) is a finitely oscillating sequence.

2. The function f: N — R defined by

1 . .
SN if n is even

fn) = ~(1—n) if nis odd

determines the sequence 0,1, —1,2,—2,3, ..... . The range of this sequence is Z. Hence the
sequence is neither bounded below nor bounded above. Hence it cannot converge or diverge
to +oo. This sequence is infinitely oscillating.

Exercises.

1. Discuss the behaviour of each of the following sequences.
(a) (n)

1 1 1
(b) 1,5,2,5,3, ...... ,;,Tl, ......

(© ((=1)"5)
@ (D" +5)
(e) (=n?)

(f) V)

(9) (cosnm)

(b) (sinnm/2).

2. Show that if (a,,) diverges to —oo and a,, # 0 for all n, then (1/2 convergesto 0 .
18
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3. If (a,) » 0and a, < 0 forall n prove that (1/a,) > —o.

1.7. The Algebra of Limits:

In this section we prove a few simple theorems for sequences vied are very useful in

calculating limits of sequences.
Theorem 8:

If (a,,) = a and (b,) — b then (a, + b,) > a + b.
Proof:

Let € > 0 be given.

Now |a, + b, —a — b —a+b, — bl

= lay

<la,—al+|b,—=b| ... (D)
Since (a,) — a, there exists a natural number n, such that

la, — al <%£foralInZn1 .............. 2)

Since (b,) — b, there exists a natural number n, such that

by — bl < eforalln =n, ...o......... 3)
Let m = max{n,,n,}.

Thenlan+bn—a—b|<%£+%s=sf0ralln2m.

(by 1,2 and 3)
~(a,+by) s a+b
Note:

Similarly we can prove that (a,, — b,,) = a — b.

Theorem 9:

If (a,) » a and k € R then (ka,) - ka.

Proof:

19
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If k = 0, (ka,,) is the constant sequence 0,0,0, and hence the result is trivial.

Now, let k = 0.
Then |ka,, — ka| = |k|la, —al ......... (1
Let € > 0 be given.

Since (a,) — a, there exists m € N

such that |a,, — a| < ﬁ foralln>m........... (2)

o |ka, — ka| < & for alln = m by (1 and 2).
=~ (ka,) - ka.

Theorem 10:

If (a,,) = a and (b,) — b then (a,b,) - ab.
Proof:

Let € > 0 be given.
n— anb + a,b — ab|

|a,b
|a,b, —a,b| + |a,b — ab|
la,||lb, — bl + |blla, —al ........... (1)

Now, |a, b,, — ab|

VANl

Also, since (a,) — a, (a,) is a bounded sequence. (by theorem 2)
= There exists a real number k > 0 such that |a,| < k foralln. ......... 2
Using (1) and (2) we get

|a,b, —ab| < k|b, — b| + |b|la, —al ......... 3)
Now since (a,,) — a there exists a natural number n, such that

la, — al <ﬁ foraln>n, ............. 4).

Since (b,,) — b, there exists a natural number n, such that

|b, — bl <§ foralln>n, ............ (5)

Let m = max{n,,n,}. Then

20
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Let m = max{n,n,}

& &
@nby = abl < k (5) + Ib] (W) — ¢foralln > m(by3,4and5).

Hence (a,b,) — ab.

Theorem 11:

If (a,) > aanda, # 0 forallnand a = 0, the e, (ai) -1

a

Proof:

Let € > 0 be given.

1

11 _
lanllal

an—al| _

We bave

la, —al ............ (1)

an, a ana

Now, a = 0. Hence |a| > 0.

Since (a,) — a there exists n; € N suchthat |a,, — a| < % |a] forall n > n,.

Hence |a,| > %|a| foralln>n; ............. (2)

Using (1) and (2) we get

1 1

an a

2
lal?

<—la,—alforalln=>n; ............ 3)

Now since (a,,) — a there exists n, € N such that
la, —al <selal? foralln =n, ...oo...... (4)

Let m = max{n,,n,}

=¢foralln>m (by3and4)

1 1| 2|al?s
la|>2

a, a

&)
Sl—) - -
a, a
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Corollary:

Let (a,,) » aand (b,) » b where b, # 0 forallnand b = 0.
an a
Then (E) - >

Proof:

1

(—) - % (by theorem 11).

(a—”) — = (by theorem 10).
Note:

Even if lim a,, and lim b,, do not exist, lim (a,, + b,,) and lim ‘;—" may exist. For example let
Xx—— n-— X—00 n—-— bn

a, = ((-1)™) and b,, = ((—1)™*1). Clearly lima,,, and lim b,, do not exist. Now (a,, + b,,)
n n--—

is the constant sequence 0,0,0, ..... Each of (a, b,,) and (a,,/b,,) is the constant sequence
-1,—-1, ... Hence (a,, + b,) = 0.(a,, b,) - —1 and (a,/b,) - —1.
Theorem 12:

If (a,,) = athen (la,|) = |a].

Proof:
Let € > 0 be given.
Now, ||la,| — la|| < lag—al .............. (1)

Since (a,,) — a, there exists m € N suchthat |a, —a| < € foralln > m.
Hence from (1) we get ||a,| — |a|| < & for all n > m.

Hence (la,|) - |a].
Theorem 13:

If (a,) » aand a,, = 0 for all nthen a > 0.

Proof:
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Suppose a < 0. Then —a > 0.
Choose e suchthat 0 < e < —a sothata + € < 0.

Now, since (a,) — a, there exists m € N such that |a, — a| < ¢ forall n = m.

ca—e<ap<a+teforalln >m

Now, since a + € < 0, we have a, < 0 for all n = m which is a contadiction since a, = 0.

Hence a = 0.
Note:

In the above theorem if a, > 0 for all n, we cannot say that a > 0.
. 1 1 1
For example consider the sequence (—) Here = > 0 for all n and (—) - 0.
n n n

Theorem 14:
If (a,,) = a,(b,) » band a, < b, forall n, thena < b.
Proof:
Since a,, < b,,;, we have b,, — a,, = 0 for all n.
Also (b, — a,) » b — a (by theorem 8)
~ b —a > 0( by theorem 13)
~a<sh.

Theorem 15:

If (a,) >, (b,) —»landa, <c, <b, foralln, (c;) - L

Proof:

Let € > 0 be given.

Since (ay) — L, there exists n; € Nsuchthatl —e <a, <[+ ¢, foralln >n;.

Similarly, there exists n, € N suchthatl — e < b,, <l + ¢ for all n,

Let m = max{n,,n,}.
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sl—e<a, <c, < b, <l+ef0ralln>m
tl—e<c,<l+eforalln=>m.
se, — U < eforalln > m.

~(ep) - L

Theorem 16:

If (a,) > aand a, >0 forallnand a # 0, then (/a,) - Va.

Proof:

Since a, = 0 for all n,a = 0. (by theorem 13)

Now, |,/a — a| =

an

Since (a,) - a = 0, as in theorem 11 we obtain a, > %a foralln > n,

sAfa, > ’Ga) foralln > n,.

«|Jan —al| < (\/_+1)\/_Ian—a|foralln>n1 ........... (1)

Now, let € > 0 be given.

Since (a,) — a, there exists n, € N such that

la, —al <eva(V2+1)/V2foralln>n, ............. )

Let m = max{n,,n,}.

Then |\/a, —Va| < eforalln >m (by 1and 2).
(i) -V
Theorem 17:

If (a,,) » o and (b,,) - o then (a, + b,;) = .

Proof:
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Let £ > 0 be any given real number.

Since (a,,) — oo, there exists n; € N such that a,, > %k foralln > n,.

Similarly, there exists n, € N such that b,, > %k forall n > n,.

Let m = max{n,,n,}.

Then a, + b, > k foralln > m.
(an + bn) -
Theorem 18:

If (a,,) = o and (b,) — o then (a,b,) - .
Proof:

Let & > 0 be any given real number.

Since (a,) — oo, there exists n; € N such that a,, > vk forall n > n,.

Similarly there exists n, € N such that b, > vk foralln > n,..
Let m = max{n,,n,}.

Then a,b, > k foralln = m.
(anbn) — 0
Theorem 19:

Let (a,,) — oo. Then
(i) ifc > 0,(ca,) — oo.
(i) ifc <0, (ca,) — —oo.

Proof:

(i) Let ¢ > 0. Let kK > 0 be any given real number.

Since (a,) — oo, there exists m € N suchthat a,, > k/c foralln > m
~ca, >kforalln>m

. (ca,) » »
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(i) Let ¢ < 0. Let k < 0 be any given real number. Then k/c > 0,
=~ There exists m € N such that a,, > k/c for all n > m.
=~ ca, < k foralln = m (since ¢ < 0).

o (cay) » —oo.
Theorem 20:

If (a,,) = o and (b,,) is bounded then (a,, + b,) - .
Proof:

Since (b,) is bounded, there exists a real number m < 0 such ithat
b, >mforalln. ............. (1)

Now, let k > 0 be any real number.

Sincem < 0,k—m > 0.

Since (a,,) — oo, there exists n, € N such that

a,>k—mforalln=>ny ..........(2)
“ay,+b,>k—m+m=kforalln =n, (by 1 and 2).
o (ap + by) — oo.

Problem 1.

2
Show that lim ~22245 _ 1

no— 6n2+4n+7 2

Solution:

2,5

_3n2+2n+5 _ 3ty tom
6N2+AN+T  Ght

n n

an

Now, lim (3+2+3)=3+2lim ~+5 lim >
xo— n o n

n—-—oo n x—>—n? 2

=3+0+0=3

Similarly, lim (6 + % + %) = 6.

n—-oo
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Problem 2:

Show that lim (M) =

n—oo n3

Solution:

2 _ n(n+1)(2n+1)

We know that 12 + 22 + ---.+n .

12+ 22+ . 4n? y nn+1)2n+1)

' nl—l>r—noo n3 - nl—g}o 6n3
1 1 1
= lim —(1 +—> (2 +—>
n-o—o 6 n n
B 1
3
Problem 3:
. n
Show that %l_l;l;lo \/ﬁ =1
Solution:
1
lim,,_,__ = lim,,_,_s

n
G )

1
= ( by theorem 11)
lim [(1+ i)
n——oo n
1
= ( by theorem 16)
lim (1+ iz
n—oo n

=1
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Problem 4:

Show that if (a,,) - 0 and (b,,) is bounded, then (a,,b,,) — 0.
Solution:

Since (by,) is bounded, there exists k > 0 such that |by, |, all n.
o agby| < klay,).

Now, let € > 0 be given.

Since (a,) — 0, there exists m € N such that |a,| < ¢/k foralln,,

~lapby| < e foralln > m.
~ (a,by) - 0.

Problem 5;:

Show that lim 32

n->—oco N

=0.

Solution:

|sinn| < 1 for all n.

= (sinn) is a bounded sequence.

1
Also, (—) -0
n

sinn
( " ) - 0 (by problem 4)

Problem 6:

Show that lim (a'/™) = 1 where a > 0 is any real muntrat.
n-—oo

Solution:
Case (i)
Let a = 1. Then a'/™ = 1 for each n.

Hence (a'/") - 1
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Case (i)
Leta > 1. Then a'/™ > 1.
Let a'/® = 1 + h,, where h,, > 0.

~a=(1+h)"
=1+nh, + ..+ h"
> 1+ nh,.

a—1
~h, < mant

a—1
.-.0<hn<T.

Hence lim h, = 0.

n——00
w(a)=1+hy) -1
Case (iii)

Let0 <a<1.Then1/a > 1.

1
&~ (1/a)n - 1 (by case (ii) ).
1
(—1> - 1.
an
« (a*™) > 1 (by theorem 11)
Problem 7:

Show that lim(n/?) = 1.

Solution:

Clearly n*/™ > 1 for all n.
Let n'/ > 1 + h,, where h,, > 0.

Thenn =1+ h,)"
=1+ nh, + nc,h%2 + - ...+ h?
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1
> En(n —1)h2

wh2 <2

n—1

2
Since ’m - 0and h, =0, (h,) - 0.

a(nr)=1+hy) -1

Problem 8.

. 1 1 1 1
Show that nl_l)r_noo (\/(2n2+1) + Tanti) T m) =3

Solution:
1 1 1
Leta, = ot T T T T

Then we have the inequality

n <a <—
@nZ+n) — " T JenZ+y)’

1 1
f———<g, < —
Je+n) o J2+)

Now, lim —— = lim —m— = —.

Rt J(Tg) s \/(an_lz) V2

~ lima, = - (by theorem 15).
vZ

n—-oo

Problem 9:

Give an example to show that if (a,,) is a sequence diverging co and (b,,) is a sequence

diverging to —oo then (a,, + b,) need not be: divergent sequence.

Solution:
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Let (a,,) = (n) and (b,) = (—n).
Clearly (a,) — o and (b,,) » —oo.
However (a,, + b,,) is the constant sequence 0,0,0, ......

Exercises.

1.Evaluate the limits of the following sequences as n — oo.

@ (57) O () g ()
@ (VoZtm)—n) (9O 0 (s

(@) (M=) () ((—1)/m) (") s

which converges to 0 .

(n+1)(n*+6)

2. A sequence (a,,) is called a null sequence if (a,) — 0. Show that if (a,) and (b,,) are null

sequences then (a, + by,), (a,b,), (ka,) and (|a,|) are also null sequences.
3. If (a,) » —oo and (b,,) » —oo, then show that (a, + b,) » — and (a, b,) = .
4. If (a,) » —oo, then show that (ka,) » —c ifk > 0 and (ka,) » w0 ifk <0.

5. If (a,,) » —oo and (b,,) is a bounded sequence then show that (a; + b,) - —o.

6. Show that following sequences diverge to co.
@m@3+n?+n+1)
(b) (n + (-1)"/n?)

(c) (m™)
n2+3n+1 . n2+3n+1 1
@ (™) (Hint:" 2 =ng 2 - o),

7. Prove the following.

. 1 1 1
(@) lim,,_,_ ( e + T + - +—T2+n>
(b) lim,,_, (i+;+ - ) = 0.

nz = (n+1)2 T (2n)?

. 1 1 1) _
(C) lim,, 0 (\/_ﬁ-l_\/m + +W> = o0

8. Give examples of sequences (a,) and (b,,) such that

@) (a,) — oo, (b,) = o and (a,, — b,) converges.

(b) (a,) = o, (b,,) » 0 and (a, — b,,) convergesto 5.

(c) (a,) = oo, (b,) = 0 and (a, — b,) = .
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Unit 1l

Behaviour of Monotonic Sequences — Some theorem on limits — Sub sequences — Limit points
— Cauchy sequences.

Chapter 2: Sections 2.1 - 2.5.

2.1. Behaviour of Monotonic Sequences:
The following theorem gives the complete behaviour of monotonic sequences.

Theorem 1:
(i) A monotonic increasing sequence which is bounded above converges to its. 1.u.b.
(ii) A monotonic increasing sequence which is not bounded above diverges to co

(iif) A monotonic decreasing sequence which is bounded below converges to its g.l.b.
(iv) A monotonic decreasing sequence which is not bounded below diverges to —oo.

Proof:
(i)Let (a,) be a monotonic increasing sequence which is bounded above.
Let k be the [, u, b of the sequence.

Thena, <kforalln. .............. (1)
Now, let € > 0 be given.

~ k — & < k and hence k — ¢ is not an upper bound of (a,,).
Hence, there exists a,,, such that a,,, > k — «.

Now, since (a,,) is monotonic increasing, a,, = a,, foralln > m.
Hencea, >k —cforalln>m ............ (2)
tk—e<a,<kforalln>m(byland2)

~la, — k| <e foralln > m.

~ (an) - k.

(i) Let (a,,) be a monotonic increasing sequence which is not bounded above.
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Let k > 0 be any real number.

Since (a,,) is not bounded, there exists m € N such that a,,, > k.
Also a,, = a,, foralln > m.

s ay > kforalln > m.
o (a,) - oo.

Proof of (iii) is similar to that of (i).
Proof of (iv) is similar to that of (ii).
Note:

The above theorem shows that a monotonic sequence cither converges or diverges. Thus a

monotonic sequence cannot be an oscillating sequence.

Problem 1:

Leta, =1+ % + % + +% Show that lim a,, exists and lies between 2 and 3 .

n—-oco

Solution:

Clearly (a,,) is a monotonic increasing sequence.

11 1
an—1+ﬁ+§+---+a

1 1 1

S1+1+§+?+'“"'+2n—1
1
—

1—=

1
=1+2(1—2—n>

=3_

1
Also, =1+

<3

2n—1

~a, < 3.

= (a,,) is bounded above.
~ lima,, exists.

Also 2 < a,, < 3 for all n.
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. 2 <lima, < 3.

Hence the result.
Note:

The limit of the above sequence is denoted by e.
Problem 2:

n
Show that the sequence (1 + %) converges.

Solution:

1 n
Let a, = (1 + ;)
By binomial theorem,

nn—-1)1 nn-1)(n-2)1
T 3! wtret

—1+1+1(1 1)+1(1 1)(1 2)+
N 2! n/ 3! n n

1 1 2 n—1

BT N
n! n n n

1 1 1

<1+1+i+§+'“..+a
< 3 (refer problem 1).

= (ay) is bounded above.

a, =1+1+

Also,

—1+1+1(1 ! >+1(1 ! )(1 2 )+
An+1 = 21 n+1) "3l n+1 n+1
+ 1 (1 1 ) (1 n )
T (n+ 1! n+1/)77" n+1

—1+1+1 1 1>+1(1 1)(1 2)+
N 2!( n) 3! n n

- an+1 > an
= (a,,) is monotonic increasing,

=~ (a,,) is a convergent sequence.
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Problem 3:

n
Show that lim,,_, s, (1 + %) = lim, e (1 + % +oee o+ _) =e
Solution:

n
Leta, =(1+%) and b, = 1+13+---.+—.

! n!

Then a,, < b, for all n (refer problem 2 above).
~limyLea, <limyLeoby, oo (1)

Now, let m > n.

]
1 1 n—1 1 1 m-—1
+—(1——)-.-(1— )+--..+—(1——)---..(1——)
n! m m m! m m
1 1 1 1 n—1
>1+1+—(1——)+---...+—(1——)---.....(1— )
2! m n! m m

Fixing n and taking limit as m — oo we get

1 1
lim G 2 1+ 14 oy ok — = by

m-oo 2!
Now taking limit as n — oo we get

lima, = limb, .............. 2)

m-—oo m-—oo

~ lima, = lim b, = e( by (1) and (2))
n—-oo

n—-oo

Problem 4:
1 1 1
Leta, = —+—+-.+—. Show that (a,,) converges.

Solution:

Apy1 — Qp
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()l )
T \n+2 T 2n+42 n+1 T n+n

1 N 1 1
" 2n+1 2n4+2 n+1

1
T 2n+1 2n+2

> 0 foralln

& Ay > ay forall n.

= (a,) is a monotonic increasing sequence.

1 1 1
Alsoa,=—+-—+ ..+ —.
n+1 n+2 n+n

<1+1+---..+1=1foralln.
n n

n

=~ (a,,) is bounded above.
=~ (a,) converges.
Problem 5:

Leta, =1+ % + § + + % Show that (a,,) diverges to oo.
Solution:
Clearly ( a,, ) is a monotonic increasing sequence:

Now, letm = 2" —1

1
am=1+§+---...+2n_1
—1+(1+1)+(1 1 1+1>+ +( - + 1 )
- 2 3 45 6 7 2n-1 2n — 1
>1+(1+1)+<1+1 1+1>+ (1+ +
4 4 8 8 8 8 2n 2n

1 1
=1+(n—1)§=§(n+1)

1
S A >§(n+1)
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= (a,,) is not bounded above. Hence (a,) — oo.

Problem 6:

!

Prove that (:—n) converges.

Solution:

1
Leta, = nl

n

Then % = MDY _ (”—“)n > 1

An+1 n" (n+1)! n
& Ay > anyq foralln € N.
= (a,) is a monotonic decreasing sequence.
Also a, > 0 foralln € N.
= (a,) is bounded below.
=~ (a,) converges.
Problem 7:

Discuss the behaviour of the geometric sequence (r™) .

Solution:

Case (i) Letr = 0.

Then (r™) reduces to the constant sequence 0,0, ........ and hence converges to 0.

In this case (r™) reduces to the constant sequence 1,1,1, ....... and hence converges to 1.

In this case, (™) is a monotonic decreasing sequence and (r™) > 0

=~ (r™) is monotonic decreasing and bounded below and hence (™) converges.

Let (r™) - [
Sincer®™>0foralln,l>0. ............... (1)
We claimthat [ = 0.

Let € > 0 be given. Since (™) — [, there exists m € N such that
1<r*<l+eforaln=m.
Fixn>m.Thenl <r™1 ... ()
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Also ™t = r.r® < r(l + ¢).
~l<r{l+e¢) (by2and3).

2 1< (i) €.

Since this is true for every ¢ > 0, wegetl < 0. ............. (4)
~1l=0 (byland4).

Case(iv) Let -1 <r < 0.

Thenr™ = (=1)"*|r|" where 0 < |r| < 1. =

By cast (iii) (|r|™) — 0.

Also ((—1)™) is a bounded sequencé.

s~ ((=D™r|™) converges to 0 (by problem 4 of 3.6)

~ (™) > 0.

Case (v) Let r = —1.

In this case (r™) reduces to —1,1, —1, which oscillates finitely.

Case (vi) Letr > 1.

Then 0 < % < 1 and hence (rin) — 0 (by case (iii))

o (r™) - oo : (by theorem 5 of 1.5)

Case (vii) Let r < —1.

Then the terms of the sequence (™) are alternatively positive and negative. Also |r| > 1 and

hence by case (vi) (|r]#) is unbounded.

=~ (r™) oscillates infinitely.

Thus (i) (r*) converges if —1 <r < 1.
(ii) (r™) diverges if r > 1.

(iii) (r'") oscillates if r < —1.
Problem 8:

Show that if |r| < 1 then (nr™) - 0.

Solution. The result is trivial if r = 0.
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Let 0 < |r| < 1. Then |r| =

1
. n _ _
s r] aA+p)"

1

1+np+%p2+---.....

< 2
n(n — 1)p?

. n -
IS G

Now, let € > 0 be given.

2 2
Then m < eprovidedn > 1 +pTg
2
st <eifn > 14+ —.
p?e

S~ limnr® =0

n—->oo

Problem 9:

logn

Show that lim =0ifp>0.

n-oo N

Solution:

We have e? > 1 (sincee > 1)

1
--e—p<1

(#) — 0 (by problem 8).
~ Given g > 0, there exists a natural number m such that
L <Zforalln>m.

en epP

Now, let g be the positive integer such that g < logn < (g + 1).

logn g+1
a nb nb
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g+1

9+
~ (e9)p

(since €9 < n by (2))

_eP(g+1)
T ep(g+l)

€
<eP (e_P) provided g + 1 = m (using 1)

_logn
i

< eprovided g +1 = m.

Now, if n > e™, then logn > m.

But g + 1 > logn (by (2))

sn=2em=>g+1=>m.
_logn
S

< e provided n > e™.

. logn
~ lim =
n-oo NP

Problem 10:

Let (a,) and (b,,) be two sequences of positive terms such that a,.,; = %(an + b,,) and

b,+1 = +/(a,b,). Prove that (a,) and (b,) converge to the same limit.
Solution:
By hypothesis, a,,., and b, are respectively the A.M. and C,, between a,, and b,,.

Also we know that A.M. > G.M.

Hence a, 11 = bpiq  cevnvennnn (1)

Moreover the A.M. and G.M. of two numbers lie between the ,,  numbers.
My = Ape by forallne Nl (2)

and a, = b,,, = b, forallne N. ............... 3)

SNy = Apyq = bpy = by foralln e N.(by2and 3)

= (a,,) is a monotonic decreasing sequence and (b,,) is a monotonic increasing sequence.
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Further, a,, = b, = b, foralln € N.
and b, < a, <a, foralln e N.
= (a,) is a monotonic decreasing sequence bounded below by b, and (b,,) is a monotonic

increasing sequence bounded above by a;.

= (ay) - l(say ) and (b,) - m (say)
1
NOW, Apy1 = E (a‘l’l + bn)
1
Taking limit as n — oo, we get [ = 5 (I +m).

~l=m.

Problem 11:

Let (a,,) be a sequence of positive terms such that a; < a, and a,,,, = %(an+1 + a,). Then

show that (a,,_;) is @ monotonic increasing sequence and ( a,,, ) is a decreasing sequence

and both converge to limit.

Solution:

We have a,,,, = %(an+1 +ay)anda; <a; ....ooo..... €))

~ag =3 (a, + a;) and a; < a,

L <3< Ay e (2)
1
Also a, = E(a1 + a,) and a; < a,( by 1 and 2).
La3< <Ay e e (3)
way <az<a,<a, (by2and3)

Proceeding as above, we get a; < a; < as < ag < a, < a, and so on.
= (d,,) is a monotonic decreasing sequence bounded below by a; and (a,,_,) isa

monotonic increasing sequence bounded above by a,_.
“ (azq) = 1(say ) and (azn_1) > m (say).
Now, azpn4z = %(a2n+1 + az,) (by 1)

Taking limitasn — oo, we get [ = %(m +1).
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r= =1
s l=m.
Now, let € > 0 be given. Since (a,,) — [, there exists n € N such that |a,,, — | < & for all

n = ny.

Similarly there exists n, € N such that |a,,_, — | < e-foralln >n,. Letm =

max{ny, n,}

Then |a, — | < e foralln = m.
~(ap) - L

1
Now, a4, = Py (an+1 + an)

1

a, = E(as + a,).
1

az = E(Clz +a,).

Adding, we get a4, = %(a1 + 2a,).

Taking limit as n — oo, we get

1 1
l+El=§(a1+2a2)

l = g(al + Zaz).
Exercises:

1. Let (a,) be a sequence of positive terms such that a; < a, and a,;, = +/(a,4+1a,).
Then show that ( a,,_) is a monotonic increasing scquence and ( a, ) is a monotonic
decreasing sequence and both converge to the common limit (a;a2)/3. Hence deduce

that ( a, ) converges to the same limit.
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20,104

. Then

Let (ay) be a sequence of positive terms such that a; < a, and a,,,, =

An+1+as

show that (a,,_,) is a monotonic increasing sequence and a,, is a monotonic

decreasing sequence and both converge to the common limit . %172 Hence deduce

(2aq+ay)
that ( a,, ) converges to the same limit.
Verify whether the following sequences are monotonic and discuss tbeir behaviour.
- 2n-7
(D (3n+2)
.- 1
(") (_ 2n+1)
(iii) ((n + 1) —vn)
(ivia, =1anda,.; =2+ a,)

an+d
bn+c

Prove that ( ) IS @ monotonic increasing or decreasing or a constant sequence

according as bd < ac, bd > ac,bd = ac.

xn

x"142n

+n

Show that the sequence whose n'" term is converges to % if |x] <1 and

converges to x if |x| > 1.

Show the sequence (a,) given by a; = V2 and a, ; = /(2a,) foralln > 1

convergesto 2.

2.2. Some Theorems on Limits:

Theorem 1: (Cauchy’s first limit theorem)

If (a,,) — [ then (

Proof:

al + az + ‘”..+an>
-l
n

Case (i) Let I = 0.

Leth, =

al +a2 +"’...+an

n

Let € > 0 be given. Since, (a,) — 0 there exists m € N
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such that |a,| < %e foralln>m. ............. €))

Now, let n > m.

ay+ay+ et @y Ay o ta
Thenlbn|= 1 2 1:1 m+1 n
< |a1| + |a2| +oeet |am| + |am+1| +"'--+|an|
n n
k |a + -+ ]a
——+| me1l 4| where k = |a | + .. +]|a,,]
n n
<Er(B2M)E oy
- > (by 1)
<k+€(‘ T <) 2
— 15 since — NN ¢
. k .
Now, since (Z) — 0, there exists n, € N such that
kK 1
-<-egforalln=ng ............. 3
n 2
Let n;, = max{m,ny}.
Then |b,| < e foralln >n,; (using 2and 3).
- (by) = 0
Case (ii) Let L #= 0.
Since (a,) = L, (a, — 1) = 0.
a;—D+(a—-D+-+(a,—1
(( 0+ @D+t ))ﬁo(bycasei)
a, +a; ... +a, —nl
( >—>0
n
a; +a,....+a
(1 2 ”—z>—>0.
n
a; +a,....+a,
( >—>l
n

Note: The converse of the above theorem is not true. For example, coset. the sequence

(an) = ((=D").
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0 if n is even

1
n —— ifnisodd ’
n

Clearly (b,,) — 0 and (a,,) is not convergent.
Theorem 2: (Cesaro's theorem)

If (a,) = a and (by) = bye, (2Pro2mttnis) o, g

Proof:

albn+--~....+anb1
n .

Letc, =
Now, put a,, = a + 1, so that (r;,) — 0.

Then ¢, = (a+r1)bn+~~'...+(a+rn)b1.

n

_a(by + .+ by) N b, + - .+ 1by
B n n

Now, by Cauchy's first limit theorem,

(bl +by + -+ bn> b

- D.
n

. (a(b1 +by + -+ bn)> S

n

Hence it is enough if we prove that (rlbn+n—+r"b1) - 0.

Now, since (b,) — b.(b,) is a bounded sequence. (by theorem 2 of 1.2)

= There exists a real number k > 0 such that |b,,| < k for all n.

. T'lbn + St + Tnbl

Aty

n n

<r1+ et
n

Since (1) — 0, n) — 0 (by theorem 1)

(T‘lbn + e ..+Tnb1> N O
n

Hence the theorem.
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Theorem 3: (Cauchy's second limit theorem)

Let (a,,) be a sequence of positive terms. Then lim al/ " = lim 2 provided the limit on

n—-oo a—oo Qg

the right hand side exists, whether finite or infinite.

Proof:

Case (i) lim 2 = 1, finite.

n—oco an

Let t > 0 be any given real number.

Then there exists m € N such that

1 1
l—ge<%<l+zeforaunzm

an

Now choose n nim.

Thenl—§e<w<l+§e

am

1 a 1
l——e< 2 <4 -e

2 Am+1 2
l ! < <l+1

2°Sa,_, 2¢

Multiplying these inequalities, we obtain

n-m n-m

(l 1) <a”<(l+1>
2¢ a, 2¢

n
(=39 (1+3¢)
— < ay < Ay ——4
(—1) (1+3¢)"
2°¢ 2 ¢
1 14\"
kl( —Ee) <a, <k, <l+§8> where k4, k, are some consume
1 1
/n _ 1/n 1/n -
(l 2) <kl <l+zs>.............(1)

Now(l/n 1 )—>l——e(smce(k ")
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L)

(by solved problem 6 of 1.6 )

=~ There exists n, € N such that

N n (11 _1 1
(l 28) 2<~z<k1 (l 2e)<(l 2s)+2$ foralln>ng .............. (2)
Similarly, there exists n, € N such that

(1+3e)—se <k (1+5¢) < (1+5¢) +3eforall n 2 n,.......(3)

Let n, = max{m,ny,n,}.

Thenl—e< k™ (1-3¢) <a)/" <k (1+3e)<l+e

foralln = ny ( by 1,2 and 3)

sl—e< a,i/n <1+ ¢forall n > ny. Hence (a,lq/n) -1l
Case (ii) lim 2 = oo,

n->—oo an

1
Then lim M

N 0, (by theorem 3.4)
n——oo )

an
1

1\n
~ By case (i), (a_> - 0.

n
1
(aﬁ) — oo (by theorem 5 of 1.5).
Theorem 4:

A

Let (a,) be any sequence and lim,_,

=1[.Ifl > 1, then (a,) - 0.

an+1

Proof:

Let k be any real number such that 1 < k < [.

a
Since lim |—| =1 , there exists m € N such that
an+1
an
l—e< <l+eforalln =>m.
An+1
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b B e

> k forall n > m.

an

Choosing k = | — k we obtain

an+1
Now, fix n = m. Then
a a a,_
| L >k;| m+l > Ko+ |— ! > k;
Am+1 Am+2 an
Multiplying the above inequalities we get Z—" > knom,
n

a, n

< km (1>
an k)
m 1
|an| <k |am| (E)
o la,| < Ar™ where A = |a,,|k™ is a constant and r = 1/k.

Nowk>1=0<r<1.
. (r™) - 0 (by solved problem 7 of 1.1)

= (ay) = 0.

n

Note:

The above theorem is true even if I = x,

Theorem 5:

Let (a,) be any sequence of positive terms and lim ( In ) = 1. Ifl < 1then (a,) - x.

x—+ \An+1

Proof:

Proof is similar to that of theorem 4.

Theorem 6:

If the sequences (a,,) and (b,,) converge to 0 and (b,,); strictly monotonic decreasing then

lim (a—") = lim (M) provided the limit on the right hand side exists whether finite or

n—oo \by n-o \bp—bns1
infinite.
Proof:

Case (i) Let lim (M) = [, finite.

n—-oo \bp—bni1

Let € > 0 be given. Then there exists m € N such that
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a, —a
l—e< 2™ 14 eforalln > m.
bn_bn+1

Since b, — b1 > 0, we get

(by = bpy)(l—€) < ay — apyr < (by —bypy)(L+¢) foralln = m.

Letn >p =>m.

Then (b, — bp11)(L— &) < ay — apyy < (by — bpi1)(L+ €)

(bp+1 - bp+2)(l - 5) < Ap+1 — Ap42 < (bp+1 - bp+2)(l + 5)
(bn—l - bn)(l - 8) <Qp-1—ap < (bn—l - bn)(l + 5)

Adding the above inequalities, we get

(b, = b))l —e)<a,—a, < (b, —by)(l+¢)
Taking limit as n — oo, we get

b,(l —¢) < a, < b,(l + ¢&)(since (ay), (b,) — 0)
a4

l—£<b

<l+£(sincebp>0)
P

<eforallp = m.

Case (ii) limy,q, (2222252) = .
bp—bni1

Let k > 0 be any real number.

Then there exists m € N such that 2221 > k for all n > m.

n n+1

Sy — Apyq > (by — byyp)k foralln = m.
Letn>p =m.

Writing the inequalities forn = p,p + 1, ... ... ,n and adding we get
a, — ay > k(b, — by).

Taking limit as n — o, we get a, = kb,
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p
~—2>kforallp >m.
by

a,\ ..
(—) diverges to x
by,

Problem 1:

Show that lim 1(1 +24 .....+1) = 0.

n-oo n

Solution:

Leta, = %

We know that (a,,) — 0. Hence by Cauchy's first limit theorem

a1 + a2 + .....+an
Weget( )—)0
n
1 1 1
—(1 +—+---..+—> -0
n 2 n
Problem 2:

Show that limn/™ = 1.

Solution:

Leta, =n.

1
= lim (1 +—) =1
n—-oo n

= By Cauchy's second limit theorem, we get lim n'/™ = 1

n—-oo

Problem 3:

Prove that = [(n + 1) (n + 2) ... (n + m)]¥/" — 4/e.

Solution:
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Leta, = ~[(n+ D(n+2).....

- [(""‘ D +2) ... (n+n)"

nn

Let b, = (1 +%) (1+%) (1+§) so that a, = b}/".

o s ()10 (1422)

n+1

— 2n+ 1)@2n+ Z)UI:W

_2(2n+1) n"
 on+1 (m+1)n

()

1+1/n)"
()

=~ By theorem 3.24 we get (b,ll/ ") 4/e
~ (a,) - 4/e.

Problem 4:

Prove that lim,_,_, *

n!

= 0.
Solution:

n
Let v, = %

a. x"(n+1)! n+1
a,+ n! xntl '
an

X
~ lim

n—-oo

= 0

A1
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~ (ay) = 0 ( by theorem 4)

Problem 5:

Show that lim % =0.

n—oo

Solution:
Leta, = :—;
an | n! (n+ 1)"*?!
Tapsl o (n+1)!
n+ 1\" ]\
=(5) =(1+3)
n n
. an . 1\"
~ lim = lim (1 +—>
n—oo aTl+1 n—-oo n

= e ( by problem 3 of 2.1.)
> 1.

~ (a,) = 0. (by theorem 4)

Exercises:

1. Evaluate the limits of the following sequences whose n‘ttery), s, given below.

z 1/2 4 31/3 4 ... 1/n 1 2/3 4 ... 2/n
@ (1 +22+3Y3 + o 4n'/") (0) = (1+2+3%3 + -+ n?")

) @n @) 0@+

©=(1+3+1+.+
n 3 5

2n—1
(@ 1+ 1/myms () ELT () L@@ yyere g s g fixed positite
real number.
1/n

2. Proverllilrrll %(g)z (g)g(%ﬂ)n] =e.

. n
3. Prove that 11152 G

=e.

n
4. Prove that lim (1 + n—il) =e.

n—-»oo
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-n
5. Prove that lim (1 — %) =e.

X—00

6. Prove that lim 233D
no= 24 2n

5
n
z—n—O.

7. Show that lim
n—oo

2.3. Sub sequences:

Let (a,) be a sequence. Let (n,) be a strictly increasing sequence of natural numbers. Then

(an, ) is called a subsequence of (a,,).

Note:

The terms of a subsequence occur in the same order in which they occur in the original

sequence.
Examples:

1. (a,,) is a subsequence of any sequence ((a,). Note that in this example the interval

between any two terms of the subsequence is the same,
(le,)ny, =2,n,=4,n3 =6,......... n, = 2k.

2. (a,2) is a subsequence of any sequence (a,) . Hence a,, = a;,a,, = a4, @y, = ao,
........... Here the interval between two successive terms of the subsequence goes on
increasing as k become large. Thus the interval between various terms of a subsequence need

not be regular.
3. Any sequence (a,,) is a subsequence of itself.

4. Consider the sequence (a,,) givenby 1,0, 1, 0,........ Now, (b,,) givenby 1,1,1,....Isa
subsequence of (a,,). Here (a,) is not convergent whereas the subsequence (b,,) converges

to 1. Thus a subsequence of non-convergent sequence can be a convergent sequence.

Note: A subsequence of a given subsequence (a,, ) of a sequence (a,,) is again a

subsequence of (a,,).
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Theorem 1:

If a subsequence (a,,) converges to [, then every subsequence (ank) of (a,) also converges

to L.

Proof:

Let € > 0 be given .

Since (a,,) — [ there exists me N such that
la, —l|<eforaln=m. ............. €))
Now choose n, = m

Then k= ko = ny = ny,

> nE = m.

= |ank — 1| <& forall k= k.

(ank) - [.
Note:

1. If a subsequence of a sequence convergence, then the original sequence need not
converge. (refer example 4)
2. Ifasequence (a,) has two subseuences converging to two limits, then (a,,) does not

converge. For example, consider the sequence (a,,) given by

1/n  ifniseven
“":{1+% ifnisodd

Here the subsequence (a,,,) — 0 and the subsequence (a,,_,) — 1. Hence the given

sequence ( a,, ) does not converge.
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Theorem 2:

If the sub sequences (a,,_,) and (a,,) of a sequence (a,,) converge to the same limit [ then
(a,) also converges to .
Proof:

Let € > 0 be given. Since (a,,_,) — L there exists n, € N such that |a,,,_; — I| < & for all

2n—12=ny.
Similarly there exists n, € N such that |a,, — l| < € for all 2n > n,.

Let m = max{n,, n,}.

Clearly |a,, — l| < e foralln = m.
~(ap) = L

Note:

The above result is true even if we have [ = co or —co.

Definition:

Let (a,,) be a sequence. A natural number m is called a peak point of the sequence (a,,) if

a, < a, foralln >m.
Example:

1. For the sequence (1/n), every natural number is a peak point and hence the sequence
has infinite number of peak points. In general, for a strictly monotonic decreasing

sequence every natural number is a peak point.

2. Consider the sequence 1%§ —1,—1, ........ Here 1,2,3 are the peak points of the
sequence.
3. The sequence 1,2,3, ... ... has no peak point. In general, a monotonic increasing

sequence bas no peak point.

Theorem 3:

Every sequence ( a,, ) has a monotonic subsequence.

Proof:
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Case (i):

(ay,) has infinite number of peak points.

Let the peak pointshe n; <n, <--..<n < --...
Thena,, >a,, > ..>a,, > .

= (a,) is a monotonic decreasing subsequence of (a,,).
Case (ii):

(a, ) has only a finite number of peak points or no peak poin,

Choose a natural number n; such that there is no peak point grom point of (a,,), there exists

n, > ny such that a,,, > a, . Again since n, is not a peak point, there exists nz; > n, such

that a,,, = a,,. Repeating this process we get a monotonic incteatis, subscquenc (ank) of

(an).

Theorem 4:
Every bounded sequence has a convergent subsequence.
Proof:

Let (a, ) be a bounded sequence. Let (a,,) be a monotonie subseque o, of (a,).

Since (a,,) is bounded (a,,) is also bounded:

(ank) is a bounded monotonic sequence and hence convergent,
« (an, ) is a convergent subsequence of (a,,).

Exercises:

1. Prove that if a sequence ( a, ) diverges to oo then every subsequertes of ( a,, ) also

diverges to co.

2. Prove that if a sequence (a,,) diverges to —oo then every subsequence of (a,,) also

diverges to —oo.
3. Give examples of

(i) a sequence which does not diverge to oo bal has a subsequence diverging to oo (ii)

a sequence which does not diverge to —oo but has a subsequence diverging to —oo.
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LBy g soven

(iii) a sequence (a,,) bavith two subs‘.e.quﬂénces, one diverging to oo and the other

diverging —oo,

4. Prove, that each of the following sequences is not convergent by exhibiting two sub

sequences converging to two different limits.

. 1 1 1
(I) 1,5 1,5,1,2, R

S|

(i) 1,2,1,3,1,4, .......
(iii) ((=D)™).

2.4. Limit Points:
Definition:

Let (a,,) be a sequence of real numbers a is called a limit point or a cluster point of the
sequence (a,,) if given € > 0, there exists infinite number of terms of the sequence in (a —
g, a + €). If the sequene (a,,) is not bounded above then x is a limit point of the sequence. If

(a,) is not bounded below then —co is a limit point of the sequence.
Examples:

1. Consider the sequence 1,0,1,0, .... . For this sequence 1 is a limit point since given & >
0, the interval (1 — ¢, 1 + ¢) contains infinitely many terms a4, as, as, ..... Of this

sequence. Similarly, 0 is also a limit point of this sequence.

2. If asequence (a,) converges to [ then [ is a point of the sequence. For, given £ > 0,
there cxists m € N suchthata, € (I — ¢, 1 + ¢) forall n = m.

~ (I — &, 1 + €) contains infinitcly many terms of the sequence.

3. The sequence (a,) = 1,2,3,....n ... is not bounded above and hence oo is a limit

point.

4. The sequence (a,) =1,-1,2,-2, ...... n,—n.... is neither bounded above nor

bounded below. Hence oo and —oo are limit points of the
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Theorem 1:

Let (a,,) be a sequence. A real number a is a limit point of (a,,) iff there exists a
subsequence (ay,) of (a,) converging to a.

Proof:

Suppose there exists a subsequence (ank) of (a,) converging to a.

Let € > 0 be given. Then there cxists k, € N such that a,, € (a — ¢,a + ¢) forall k > k,.
. (a — g, a + €) contains infinitely many terms of the sequence (a,,).

~ a is a limit point of the sequence (a,,).

Conversely suppose a is a limit point of (a,,).

Then for each € > 0 the interval (a — ¢, a + €) contaits infinitely many terms of the

sequence.

In particular we can find n, € N such that (a,,) € (a—1,a +1).

Also we can find n, > n, such that a,,, € (a — % a+ %)

Proceeding like this we can find natural numbers n; < n, < ns ........ such that
an, € (a—1/k,a+1/k).

Clearly (ay,) is a subsequence of (a,) and |a,, — a| < 1/k
For any € > 0,|ank — a| <eifk>1/e.

(ank) - a.

Theorem 2:
Every bounded sequence has at least one limit point.
Proof:

Let (a,) be a bounded sequence. Then there exists a convergent subsequence ( a,, ) of

(a,, ) converging to [ (say) (by theorem 2 of 1.2).
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Hence [ is a limit point of (a,,).
Note:

In general every sequence (a,,) has at least one limit point (finite or intinitc).

Theorem 3:

A sequence (a,,) converges to [ iff (a,) is bounded and [ is the only limit point of the
sequence.

Proof:

Let (a,,) = . Then (a,) is bounded (by theorem 2 of 1.2).
Also L is a limit point of the sequence (a,,) (by example 2 0f 2.4).
Now suppose [, is any other limit point of (a,). Then there exist a subsequence (ank) of

(a,) suchthat (a,) — ;.

Conversely, suppose [ is the only limit point of (a,,). Suppose (a,) does not converge to L.
Then there exists at least one € > 0 such that infinitely many terms of the sequence lie

outside (I — ¢, 1 + €). Hence we can find a subsequence (ank) of (a,)
suchthat a,, & (I —¢, 1+ ¢) forall k.

Since (ay,) is a bounded sequence, (ay, ) is also a bounded sequence. Hence (as, ) has also a

limit point by theorem 2, say, I" and 1" # L.
= (a,) has two limit points [ and [ which is a contradiction. Hence (a,) — L.

Exercises:

1. Find all the limit points of each of the following sequences.

(L/m) i) (M) i) (17 iv) (2n-1)

2. Construct a sequence having exactly 10 limit points.
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2.5. Cauchy Sequences:

In this section we prove a necessary and sufficient condition for given sequence to be
convergent. This criterion involves only the terms of sequence under consideration and hence
can be used to test the converge of a sequence without having any idea of its limit.
Definition:

A sequence (a,,) is said to be a Cauchy sequence if given £ > 0, there exists n, € N such
that |a,, — a,,| < € for all n,m > n,.

Note:

In the above definition the condition |a,, — a,,| < ¢ for all n,m > n, can be written in the
following equivalent form, naze |a,, — a,| < & for all n > n, and for all positive integers
p.

Example 1:

The sequence (1/n) is a Cauchy sequence.

Proof:
Let (a,,) = (1/n). Let £ > 0 be given.
Now, |a,, — a,| = E—% :

=~ If we choose n, to be any positive integer greater than i :

we get |a, — a,,| < € forall n,m > n,.

~ (1/n) is a Cauchy sequence.

Example 2:

The sequence ((—1)™) is not a Cauchy sequence.
Proof:

Let (a,) = ((=1)™).

“lan — angal =2

~ If e < 2, we cannot find n, such that |a,, — a,,+,| < € for all n > n,.
~ ((—1)™) is not a Cauchy sequence.

Example 3:

(n) is not a Cauchy sequence.

Proof:
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Let (a,) = (n).

slag —apl 2 1ifn #m.

=~ If we choose ¢ < 1,

we cannot find n, such that |a,, — a,,| < € for all n,m > n,,.
=~ (n) is not a Cauchy sequence.

Theorem 1:

Any convergent sequence is a Cauchy sequence.

Proof:

Let (a,,) — . Then given € > 0, there exists n, € N
such that |a,, — I| < Z¢ for alln > ny.

clag —apml=la, =1L+ 1—ayl
< |an_l|+|l_am|

1 1
<Eg+§€ = ¢ for all n,m > n,.

= (a,) is a Cauchy sequence.

Theorem 2:

Any Cauchy sequence is a bounded sequence.

Proof:

Let (a, ) be a Cauchy sequence.

Let € > 0 be given. Then there exists n, € N

such that |a,, — a,,| < € for all n,m > n,.

aag] < |an0| + £ for n = n,.

Now, let k = max{lall, la,l, ....., |ane| + s}.

Then |a,| < k for all n. Hence (a,,) is a bounded sequence.
Theorem 3:

Lel(a,,) be a Cauchy seguence. If (a,,) has a subsequence (ank) converging to [, then
(a,) - 1.

Proof:

Let ¢ > 0 be given. Then there exists n, € N such that
|an — @l <5 foralln,m=ng ... (1)

Also since (a,, ) - 1, there exists k, € N
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such that |ay,, — I < e for all k > k,

Choose n;, such that n, = n; and n,,.
Then |a, — 1| = |an—ank+ank—l|
<la, - ank| + |ank —1|
1

1
<Ee+§e=8foralln2n0.

Hence (a,) — L.

Note:

In theorem 1 we proved that any convergent sequence is a Cauchy sequence. We now proceed
to prove that the converse of the above theorem is also true. That is, any Cauchy sequence in
R is convergent. This is known as the Canchy's general principle of convergence and this
property of the real number system is known as the completeness of R and we say that R is
complete.

Theorem 4: (Cauchy's general principle of convergence)

A sequence (a,) in R is convergent iff it is a Cauchy sequence.

Proof:

In theorem 1 we have proved that any convergent sequence is a Cauchy sequence.
Conversely, let (a,) be a Cauchy sequence in R.

=~ (a,) is a bounded sequence (by theorem 2).

= There exists a subsequence (a,,) of (a,,) such that (a,,) — [

=~ (a,) - 1 (by theorem 3).

Note:

There are Cauchy sequences in Q which are not convergent in Q . For example, the
sequencel,1.4,1.41,1.414 ..., ....... whose terms are successive decimal expressions of v/2 is
a Cauchy sequence in Q@ which is not convergent in Q
Exercises:

1. Show that the following are Cauchy sequences.

@ () ®) (1+7)
OGS I C1E

2. Show that the following are not Cauchy sequences.

@ (D" +3) O (D™ (©) ()
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Unit 111
Series of positive terms: Infinite series — Comparison test.
Chapter 3: Sections 3.1, 3.2

Series of Positive Terms:

3.1. Infinite Series:

Definition:

Let (a,) = a4,ay, ......, a,, .... be a sequence of real number. Then the formal expression a, +
a, + ---.+a, + ---.. is called an infinite series of real numbers and is denoted by 7" a,, or ¥.a,,.

Let51 =Aaq;S>2 =a1+a2;53 =a1+a2+a3;
S, =aq+a, +--..+a,.

Then (s,,) is called the sequence of partial sums of the given series Za,,

The series Za,, is said to converge, diverge or oscillate accos as the sequence of partial sums
(s,,) converges, diverges or oscillates.

If (s,) — s, we say that the series Za,, converges to the sums.

We note that the behaviour of a series does not change if a fil number of terms are added or
altered.

Example 1:

Considertheseries 1+ 14+ 1+ 1+ - ......

Here s,, = n. Clearly the sequence (s,,) diverges to o. Hence the given series

diverges to co.

Example 2:

Consider the geometric series 1 +r + r2 + +r™ +

n

Here,s, =1+r+r?+ . +r* 1 = 11__rr :

Case ()0 <r<1.
Then (r™) — 0 (refer problem 7 of 1.7)

1
s (sp) = PR
=~ The given series converges to the sum 1/(1 —r).
Case (ii))r > 1.

n
-1
Then Sp = :T

Also (r™) - cowhenr > 1.
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Hence the series diverges to co.

Case (iii))r = 1.

Then the series becomes1 + 1 + ---.

=~ (s,) = (n) which diverges to co.

Case (iv) r = —1.

Then the seriesbecomes 1 —1+1—1+---...

_ {O if n is even
lifnisodd °

=~ (s,,) oscillates finitely.

'STl

Hence the given series oscillates finitely.

Case (V) r < —1.

~ (r™) oscillates infinitely (by problem 7 of 1.7).
= (s,,) oscillates infinitely.

Hence the given series oscillates infinitely.

Example 3:

Consider the series 1 +%+%+ .....+%+

1 1 1
Then Sp = 1 +; +z + e+ n—1)r

The sequence (s,,) — e (refer problem 1 of 2.1).
=~ The given series converges to the sum e.
Example 4:

Consider the series 1 + % + g + + % +

Thens, =1 +%+---+%.

Here (s,,) — oo (refer solved problem 5 of 2.1).
=~ The given series diverges to co.

Note 1:

Let ) a,, be a series of positive terms. Then (s,) is a monotonic increasing sequence. Hence
(s,) converges or diverges to co according as (s,,) is bounded or unbounded. Hence the series
Xa, converges or diverges to co. Thus a series of positive terms cannot oscillate
Note 2:

Let )’ a,, be a convergent series of positive terms converging to the sum s. Then s is the L.u.b

of (s,,). Hence s,, < s for all n.
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Also given € > 0 there exists m € N suchthats — € <'s,
Hence s — e <s, < sforalln > m.
Theorem 1:

Let Xa,, be a convergent series converging to the sum s. Then lim a,, = 0.

n—-oo
Proof:
lim a,= lim (s, — s,_1)
n—->oo n—->oo
= lim s, — lim s,_;.
n—->oo n—->oo
=s5s—s=0
Note 1:

The converse of the above theorem is not true.

(i.e.) If lima, = 0, then Y. a,, need not converge, For example, consider the series Z%.Here

lim % = 0. However the series Z% diverges. (By example 4 of 3.1)

n—-oo

Note 2:
If lima,, # 0 then the series }; a,, is not convergent. If further }; a,, is a series of positive
terms then the series cannot oscillate and hence the series diverges.
Theorem 2:
Let Za,, converge to a and Zb,, converge to b. Then Z(a,, + b,,) converges to a + b and
Yka,, converges to ka.
Proof:
Lets, =a,+a, +-..4+a, and
t, =by +by+ .. +b,.
Then (s,) = a and (t,,) - b.
. (s, £ t,) = a+ b (refer theorem 3.8)
Also (s, * t,) is the sequence of partial sums of 2(a,, + b,).
~ 2(a, £ b,) convergesto a + b.
Similarly Y, ka,, converges to ka.
Theorem 3: (Cauchy's general principle of convergence)

The series Xa,, is convergent iff given € > 0 there exists n, € N 11 such that |an+1 +a,.,+

ST +an+p| < ¢ for all n = n,, and for all positive integers p.

Proof:
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Let Y a,, be a convergent series.

Lets, =a; + - ... +a,.

=~ (s,,) is a convergent sequence.

= (s,,) is Cauchy sequence (by theorem 1 of 3.1).

= There exists ny € N such that |s,,,-s,| < & for all n > n, and for all p € N.
|an+1 +apyp + ot an+p| < ¢eforalln = nyandforallp € N.

Conversely if |anq + Gnya + ... +ayyp| < & foran, and for all p € N then (s,) is a
Cauchy sequence in R and hence, convergent. (by theorem 4 of 3.1).

=~ The given series converges.

Solved Problems.

Problem 1:

Apply Cauchy's general principle of convergence to show the series £(1/n) is not
convergent.

Solution:
Lets, =1+=+ ..+~
2 n
Suppose the series £(1/n) is convergent.
=~ By Cauchy's general principle of convergence, given: there exists m € N such that

|Sn+p —sn| <egforalln >mand fyp € N.

|(1+%+---..+$)—(1+%+---..+%)| < e for all n = nyand for all p € N.

1 1

|—+—+---.+L| < ¢ foralln > mand forall p € N.
n+1 n+2 n+p

In particular if we taken =mandp = m

we obtain —— + —— + -+, + —
m+1

1 1 1
>— 4ot —=
m+2 m+m 2m 2m

E.
% < & which is a contradiction since € > 0 is arbitrary.

=~ The given series is not convergent.
Problem 2:

Applying Cauchy's general principle of convergence provel 1 — % + % — +(—1)n% +

---.. IS convergent.

Solution:

="

n

Lets,=1—~4-— ..+
2 3
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if p is even

1 1 N _l_(—l)”‘1
Py T Sl n+1 n+2 " on+p
n+1 (n+2 n+3>
<
n+1

1
< ¢ provided n > (E - 1)

=~ By Cauchy's general principle of convergence, the given series is convergent.

Exercises:

1.
2.

Show that the series ). ( ) converges to the sum 1.

Show that the series 1 + 2 + 3 + diverges to co.

Show that if Za,, converges and Zb,, diverges then (a,, + b,,) diverges.

Prove that if Zc,, is a convergent series of positive terms then so is ; a,, c,, where ( a,
) is a bounded sequence of positive terms.

Prove that if Zd,, is a divergent sequence of positive lermis the is Za, d,, where (a,,)

is a sequence with a positive lower bound.
Showthat+ S+ =+ S+ S+ 4=~

(Hint : Express this serics as the sum of two geometric series),

Prove that a sequence (a,,) is convergent iff }.(a,,.; — a,,) in convergent.

Let a and b be two positive real numbers. Show that the series a + b + a? + b? +
a® + b3 + ---..... converges if both a and b < 1 and dive. ges if eithera > 1 or b >

1.
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3.2. Comparison Test:

In the next few sections we develop some standard tests for convergence of series of positive
terms. For the rest of this chapter we confine ourselves to series of positive terms.

Theorem 1: (Comparison Test)

(i) Let X ¢, be a convergent series of positive terms. Let }; a,, be another series of positive
terms. If there exists m € N such that a,, < ¢, for all n > m then }; a, is also convergent.
(ii) Let }; d,, be a divergent series of positive terms Let Y; a,, be another series of positive terms.
If there exists m € N such that a,, =d, for all n >m then Y a, is also divergent.
Proof:

(i) Since the convergence or divergence of a series is not altered by the removal of a finite
number of terms we may assume without loss of generality that a,, < c,. for all n.
LetS,=c¢c+c;+..+cand t, = a; +a, + .. +a,.

Since a,, < ¢, we have t,, <'s,

Now, since Y c,, is convergent, (s,,) is a convergent sequence.

= (s,,) is a bounded sequence. (by theorem 2 of sec 1.1)

=~ There exists a real positive number k such that s,, < k for all n.

sty < kforalln

Hence (t,,) is bounded above.

Also (t,,) is a monotonic increasing sequence.

= (t,) converges (by theorem 1 of 2.1).

= ), a, converges.

(ii) Let Y. d,, diverge and a,, = d,, for all n.

oty =S,

Now, (s,) diverges to oo.

= (s,) is not bounded above.

= (t,,) is not bounded above.

Further (t,,) is monotonic increasing and hence (t,,) diverges to .

~ Za,, diverges to o.

Theorem 2:

(i) If Zc,, converges and if lim,,_,, (?) exists and is finite then Za,, also converges.

(i) If ¥.d,, diverges and if lim,,_,— (Z—") exists and is greater than zero then Za,, diverges.

n

68

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Proof:

- . an\ _

(i) Let lim,, (;) = k.

Let € > 0 be given. Then there exists n, € N such that

I <k +eforalln > n,.

Cn
~ap < (k+¢&)c, foralln = n,.
Also since Xc,, is a convergent series, Z(k + €)c,, is also a convergent series.

=~ By comparison test Xa,, is convergem.
- . a_‘)’l —
(il Let _lim_ (dn) k> 0.
Choose = %k : Then there exists n, € N such that
k—ik<®<k+Zkforalln>n,.
2 dp 2

'a">1kf In>
“dn > oralln = n,.

1
Sy > Ekd” foralln = n,.

Since Zd,, is a divergent series, Zlkdn is also divergent series.
2

=~ By comparison test, Y; a,, diverges.
Theorem 3:

(i) Let Y ¢, be a convergent series of positive terms. Let Y’ a,, be another series of positive

terms. If there exists m € N such that 22 < =™ for all n > m, then La, is convergent.

an Cn

(i) Let ) d,, be a divergent series of positive terms. Let ), a,, be another series of positive

terms. If there exists m € N such that 2% > % for all n = m, then }; a,, is divergent.

an n

Proof:

-~ A a . a C
(I)n_-l-ls_n (Slncen_ﬂsn_ﬂ)
cn+l ~ cp an

Cn

aTL . . .
(—) is a monotonic decreasing sequence.
CTL
a, a,
o — < k for all n wnere k = —.
Cn o
& a, < kc, foralln € N.

Now, Zc,, is convergent. Hence Zkc,, is also a convergent series of positive terms.
=~ Xa, is also convergent ( by theorem 1).

(1) Proof is similar to that of (i).
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Note:

1. Theorems 2 and 3 are alternative, forms of the comparison test mentioned in theorem 1 and
these forms of the comparison test are often easier to work with.
2. The comparison test can be used only if we already have a large number of series whose
convergence or divergence are known. We know that a geometric series r™ converges if 0 <
r < 1 and diverges if r > 1. In the following theorem we give another family of series whose
behaviour is known.

Theorem 4:
. . 1 . . .
The harmonic series Zn—p converges if p > 1 and divergence if p < 1.

Proof:
Case (i)
Let p = 1. Then the series becomes X(1/n) which divetron (refer example 4 of 3.2).
Case (ii)
Let p < 1. Then n? < n for all n.

o > - for all n.

-~ By comparison test z nip diverges.
Case (iii) Letp > 1.

Letsn=1+l+l+--- ...... +l

2p 3P nb

1 1
Szn+1:1:1+2—p+'“ ...... +m

11 1 1 1 1
=1+( )+(—+—4~—+—)+m

2v3p) " \4p " 5p T g ' 7P
1 1 1
......... + ((zn)p + (2n+1yp + +m)
<1+2(1)+4(1>+ +zn( ! )
> ) T 2y
1
:1+2p—1+2p—2+.“ ...... +m
1 1 2 n
csmamt< 4t (L) sk (20
Now, since p > 1,p — 1 > 0. Hence Zpl_l <1
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_ 1 1
sl (zv—1> + (zv—l

1
<—— = k( say)
1 -
2r-1
Lsitl —1 < k.
Now let n be any positive integer. Choose m € N such that n < 2m*1 — 1,
Since (s,,) is a monotonic increasing sequence, s, < s __.
Hence s,, < k for all n.
Thus (s,,) is a monotonic increasing sequence and is bounded above.

=~ (sy,) is convergent.

1 .
o Zn—p is convergent.

Problem 1:

. . 1
Discuss the convergence of the series ), s
Solution:

1

(n3+1) n3/2

Also };,3/2 is convergent (by theorem 4).
. 1 .
-~ By comparison test, ), oo is convergent.
Problem 2:
Jn+1)-Vn
r—

Discuss the convergence of the series

Solution:
Jm+1)—n
ap ="——F>—
nbP
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_ n+1—n

nP(J(n+1) +vn)
1

n?(J(n+1) ++/n)
1

NOW, let bn = W .

np+1/2

. an
s lim — =

= lim
noew by no—wpp([(n+ 1) +vn)

1
note [T ¥ 1/m) + 1)

1

>

Also Y. b,, is convergent if p + % > 1 and divergent if p + % < 1 (refer theorem 4).

1 1
~ Xa, is convergent if p > > and divergent if p < 5

Problem 3:

: . 124224 4n?
Discuss the convergence of the series ), Tln

Solution:

124224 +n?
Letaq, =————
n n4+1

_nn+1)(2n+1)
6+ 1)

Now, let b,, = %

im e n’(n+ 1)(2n+1)
- m b, am 6(n*+1)

(DY

o)

Also Xb,, is divergent (by theorem 4).
=~ Xa,, is divergent (by theorem 2)
Problem 4:

2 3
Discuss the convergence of the series 1 + iz + 2—3 + 3—4 + e
2 3 4

Solution:
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= =K
n

n
Leta, = m

1
Let bn =H.

nn+1

. 1. an_ 1.
- nl—r>IOlO bn_ nl—r>IOlO (n+ 1)n*1

1
= li
T

Also Zb,, is divergent.

=~ Xa, is divergent (by theorem 2).

Problem 5:

Discuss the convergence of the series)y (loglogn)~°8™.
Solution:

Let a,, = (loglogn)~logn

= a, = n% where 0,, = log(loglogn).

Since lim,,_, ., logloglogn = oo there exists m € N

Such that 6,, > 2 for all n > m.

anfr<n?2foralln >m
wa, <n~Zforalln >m

Also Y. n~2 is convergent.

~ By comparison test the given series is convergent.

Problem 6:
1 1
Show that ). prearialey
Solution:
1
Leta, = ——.

1
Clearly, a, < —

Also ), n—lz is convergent (by theorem 4)

. By comparison test, the given series coverges.

1 1 1 1 - .
Now, a,, = il [Zn_l — 2n+1] (by partial fractions)
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BDEL)

2ll3)*G-9) = )

'Sn=a1+a2+ .+an

=_|1-
2[ 2n+1
. 1 j— 1
T ane T2
Anz—1 2
Exercises:

1.Discuss the convergence of the following series whose n'" terms are given below.

—-5n2+1

(iv) noraniez (V. )nm (v )(n +1)2/3

(n+1)3
(x1) nk+(n+2)k (x I)n+1

=% (i) ==

3+n2

.. n 1 n(n+1)
Vi) Gz Vi) o= (0 o s ooy )

at+nx

2. Prove that the series

1-4.7

1 _|_ .|. 329 T - isdivergent but the series
(1)2 s (1.4) s (1.4.7>2 N . .
3 36 369 ... 1S convergent.

3. Use the inequality e* > x if x > 0 to show that the series Te converges.

4. Show that if }; a,, is convergent then Y. a2,y ;Z and . 1+Z’;a are also convergent.

5.1f ), a,, is a divergent series of positive terms, prove that }; 1+i'2‘a is convergent.
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Unit IV
Kummer’s test — Root test — Integral Test.
Chapter 4: Sections 4.1 - 4.3

4.1. Kummer’s Test:

Theorem 1:(Kummer's test)

Let ), a, be a given series of positive terms and ), di be a series of positive terms diverging
n

to co. Then

() X ay converges if lim (dn% — dn+1) > 0 and

(i) X, diverges if lim (d,, = = d,,,; ) < 0.
n—oo an+1

Proof:
. . an _
(i) Let lim (dnm —dyyy) = 1> 0.
We distinguish two cases.
Case (i) [ is finite:

Then given € > 0, there exists m € N such that

a
l—e<d,———dy <l+eforaln>m
An+1

fdpay, — dpy10p41 > (L —€)ay,q foralln > m.

Taking € = %l, we getd,a, — dpy10p41 > %lan+1 foralln > m.

Now, let n = m.
dmm — dps1Gmer > Elam+1
An+1%m+1 — Am+20msz > Elam+2

1
dp_1an_1 — dpa, > > la,.

Adding. we get

1
dpa, —d,a, > El(am+1 + -t ay).

1
s dy Ay — dypay > El(sn —Sy) wWheres, =a; +a, + ...+ a,

1
S dp Ay > El(sn —Sm)-
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2dmam+lsm

“ $p < —"—— which is independent of n.

= The sequence (s,,) of partial sums is bounded.
. a, IS convergent.
Case (ii) [ = oo.

Then given any real number k& > 0 there exists a positive integer m.

such that dn( on ) —d,,, > kforalln > m.

an+1

o dnan - dn+1an+1 > kan+1 for a" n 2 m.
Now, let n > m. Writing the above inequality for
mm+1,......(n— 1) and adding we get

A — dan > k(apmyq + ..+ (ay)
= k(s, — Sy)-
S > k(S — Sp)-
dmam

k
= The sequence (s,,) is bounded and hence Za,, is convergent.

w5y < + Sm

T an _
(ii) lim (dnm —dyy1) =1<0
Suppose [ is finite.

Choose € > O suchthat [ + ¢ < 0.

Then there exists m € N such that

a
l—e<d,———dy <l+e<Oforalln=>m
An+1

sdpan, <dpiianp4q foralln >m

Now, let n = m. Then d,,a,,, < dyps1Ams1

An+1%m+1 < Am+20m+2
dp-10p-1 < dpay
S dpay, < dpay.

dma
na, >R
dn

Also, by hypothesis ), di is divergent.

d . .
Hence Y04 ’Z—am is divergent.
n

-~ By comparison test ), a,, is divergent.
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The proof is similar if [ = —oo.
Note 1:

The above test fails if lim (dnaa—” - dn+1) = 0.
n+1

n—»oo

Note 2:
The divergence of £(1/d,,) has not been used in the proof of (i).
Corollary 1 (D "Alembert’s ratio test)

Let ). a, be a series of positive terms. Then Za,, converges if.

lim -2 > 1 and diverges if lim —% < 1.
n—oo dn+1 n—oo An+1
Proof:

The series 1 + 1 + 1 is divergent. We can put d,, = 1 in Kummer’s Test.

an

-1

Then d,, % —dpy1 =
n

an+1

~ Za, converges if lim ( - 1) > 0.

n—oo \An4+1

an

~ ), a, converges if lim

n-x an

> 1.
1

an

<1

Similarly Y, a,, diverges if lim

n-o Anti1

Corollary 2: (Raabe's Test)

Let ). a, be ascries of positive terms. Then ), a,, converges if lim n( m o 1) > 1 and

n—oo aAn+1

diverges if limn( n 1) <1.

n—-oo an+1
Proof:

The series ), % is divergent.

~ We can put d,, = n in Kummer's test.

an

Then dn%—dnﬂ =n-"—(n+1)

an+1

~ Za,, converges if lim n( R 1) > 1 and diverges if lim n( n 1) <1.

n—co an+1 n—-oo an+1

Corollary 3. (De Morgan and Bertrand's test)

Let ). a, be a series of positive terms.
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an

Then Xa,, is convergent if lim logn [n( — 1) — 1] > 1 and is divergent if
n—->o0o

an+1

lim logn[n( - 1) - 1] <1

n—oo an+1

Proof:

The series Y, @ is divergent. (This is proved later.)

=~ We can put d,, = nlogn in Kummer's test.

an

Then dn% —dpy1 = (nlogn) —2 — (n + 1)log(n + 1)

an+1

= logn [n( I _ 1) - 1] + (n+ Dlogn — (n + Dlog(n + 1)

An+1
= logn [n (ai’; - 1) - 1] — (n+ 1)log ("ni)
a
~ limy e (dn — - dn+1>
An+1
a n+1
= lim (logn) [n( - — 1) - 1] — lim log(l +—)
n—oo an+1 n—oo n
. an
= lim (logn) [n( — 1) — 1] -1
n-o An+1

=~ The result follows by applying Kummer's test.
Note:

The following is a more general form of Kummer's test.

Let ). a, be agiven series of positive terms and ), di be a series of positive terms diverging
to co.

Then (i) Za,, converges if liminf (dni - dn+1) >0

an+1
and (ii) 3 ay, diverges if limsup (dy, = = dy4 ) < 0.
an+1
Thus D' Alembert's ratio test, Raabe's test, DeMorgan and Bertrand's test can be put in the

more general form by replacing "limit" by "lim inf" and " lim sup™ as the case may be.
Theorem 2: (Gauss’s Test)

Let Za,, be a series of positive terms such that — = 1 + % + ;—’; where P > 1and (r;,) is a

an+1

bounded sequence. Then the series Za,, converges if § > 1 and diverges if 8 < 1.

Proof:
n g4 B
An+1 n  nP
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o))

an+1

_=0.

Also (r,) is a bounded sequence.

=0 (bysolved problem 4 of 3.6 ).

~ limn (

n—->oo

a, —1>=ﬁ

An+1
.. By Raabes's test ). a,, converges if § > 1 and ), a, diverges if 8 < 1.
If B = 1, Raabes's test fails. In this case we apply Kummer's test by taking d,, = nlogn.

Now, d,, =2 — d, 1

an+1

1 n
= nlogn (1 + - + ﬁ) —(m+ Dlog(n+1)

B 1 1\ mndlogn
=—(n+1) og(l +£> + o1

n+1

= —log(l + ;) + 1

Now, by hypothesis (r,,) is a bounded sequence and by problem 9 of 1.7 ( rnlog") -0

(rnlogn) -0

np-1

. lim (an%— an+1) = —loge = -1 <0.

n-co
~ By Kummer's tesi ), a,, diverges.

Note:

Let (a,,) be any sequence (b,,) be a sequence of positive real numbers. We say that (a,,) is of
the same order of magnitude as (b,,) if there exists a real number k

such that |a, | < kb,, for all n and in this case we write a,, = 0(b,,).

In particular if ( ) is a convergent sequence then a,, = 0(b,,).

For example if a,, = then a,, = 0(1/n?).

(n +1)(n+2)

Now Gauss's test can be restated as follows.

Let ). a, be a series of positive terms such that azl =1 + +0 ( ) where p > 1. Then

an
Y. a, converges if # > 1 and diverges il B < 1.
Problem 1:

Test the convergence of the serles + — + —; zi +-
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Solution:
Leta, = —

o a, _2n+3 243/n
Tapyy n+1 1+1/n

an

-2>1.

~ lim
=0 Upty

~ By I)" Alembert's ratio test Xa,, is convergent.
Problem 2:

n
Test the convergence of X %

Solution:

n

Leta, = 1;—'

S a,  (n+Dn"™ 1
RN CES 1
(1+3)

n-

a1
» lim =—<1.
n-odpy; €

Z a, is divergent.

Problem 3:

2™n!
nn’

Test the convergence of the series ), —

Solution:

2™n!
Let a, = n_n

n

L On DT 1(1 + 1)”.
n

’ An+1 - 2(n+1)n" 2

. a e
v lim ——=->1.
n-w an+1 2

= By ratio test the series converges.

Problem 4:
Test the convergence of the series ) %
Solution:

As in the above problem, we find that lim a—"l =2=1..

n-=2 Qan, 3

=~ By ratio test the series diverges.
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Problem 5:
Test the convergence of the series }; /#x” where x is any posilive real number.

Solution:

Since x is positive the given series is a series of positive terms.
a,  |n(n+2) (1)
An+1 B (Tl + 1) X
Now, (A +2/n) (1) )
Sl 1+1/m \x/)°
a, 1

~ lim =-—.
n-olpyy X

-~ By ratio test }; a,, converges if x < 1 and diverges if x > 1.
If x = 1 the test fails.

n 1
Whenx =1,a, = =
"oANn+1 A +1/n)
s~ lima, =1
n—-oo

=~ The series diverges.
Problem 6:

Test the convergence of the series
x? x*  x® . .
1+ > + 7 + 3 + ---.. where x is any positive real number.

Solution:

Since x is a positive real number, the given series is a series of positive terms.

xZTl—Z
Letanzm,(n>1).
o ap  2n (1)
T 2n—2\x2%)’
a, 1

n-edpy; X

= By ratio test, the series converges if x2 < 1 and diverges if x? > 1. .. The series converges
if x < 1 and diverges if x > 1.
If x = 1 the test fails.

1

Whenx =1,a, = p—
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®
r= =¥
By comparing with the series £(1/n) we see that the series diverges.

Problem 7:

n?+1
sn

Test the convergence of the series ),

Solution:
an  _ 5(n%+1)
an+1  (M+1)%2+1
B 5(n?+1)
n®+2n+ 2
5 (1+ %)

- 2 2
1+H+?

. a
s lim — = 5.
n—oo An+1

=~ By ratio test the series converges.
Problem 8:
Test the convergence of the series

1 1 1 1 1 1
(E-l-g) +(2—2+3—2)+ (2—3+3—3)+ ............
Solution:

1 1
Leta, = o + o

_ 243"
T ogngn’

anp __ 6(2"+3M)
T oon+il43n+1’

an+1

_2[1+(2/3)M]
T [+(2/3)n

. a
s lim —2 = 2.
n—-oo An+4+1

=~ By ratio test the given series converges.
Problem 9:

Test the convergence of the series ) ’;—n
Solution:

n

Leta, = %
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="

=~ The series converges if x < 1 and diverges if x > 1.
If x = 1, the series becomes ), %which is divergent.
Problem 10:

Test the convergence of the series }; ’;—z: (p > 0).

Solution:

p
Leta, = 1—

. ap _ nP(n+1)
" ants (n+1)P°

_ n+1
1+ 1/n)P
an

~ lim =
n-ox a, + 1

=~ By ratio test ), a,, is convergent.
Problem 11:

Test the convergence of the series

Solution:

123.n  _n

Leta, = 5o oo

an

Apy1

_2n+3(1)
T n+1 \x
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=~ By ratio test the series converges if% > 1.

=~ The series converges if x < 2 and diverges if x > 2.

If x = 2, the ratio test fails.

. 2n+3
In this case, — = ——.
an+1 2n+2
an _ 1
a an+1 2n+2'

. Tl( an 1) __n __1
an+1 2n+2  2+42/n’

rlll_r)gon (6:11 - 1) ==

-~ By Raabe's test the series diverges.

Problem 12:

Test the convergence of the hyper geometric series

af ale+1)BB+1) ,
bt~

Solution:

a(a+1)..(a+n-1)B(B+1)..(B+n-1) 4,
r(r+1)..(r+n-1)n! X

Sa,  (r+n)(n+1) /1

Tapy (@+n)(B+n) (E)

J“%)(”%)(})
9

X
1

Leta, =

. an
~ lim ==
n—oo An+1 x

=~ The series converges if x < 1 and diverges if x > 1.
When x = 1, the ratio test fails.

a :(1+5)(1+1)

N _1
ST N

O [ [ S0 R RRE
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=~ By Gauss' test the series converges if r >‘a + ,8 and diverges
if r < a + B. Hence the given series
(i) converges if x < 1
(ii) diverges if x > 1
(i) convergesifx =1andr >a+f
(iv) divergeifx =1 and r < (1 + f3).
Problem 13:
Test for convergence of the series whose n fernll is giventy
12.32.52 . (2n— 1)?

=02 42 62 (2n)2
Solution:
un_ _ (2n+2)?

Ans1  (2n+1)2

By Gauss's test the given series is divergent.
Exercises:

Test the convergence of the following series.

n 1-3.5 (1+a)(2+a)
W2z @ 2+5 (3)1 "' T2 + st @1 + B (1+5)(2+6)
a(a+1) (a+1)(a+2) 3
(S)Zm 6)1+a+ + 3l + (7) x+ x +357 +
3:69 n
(8) 1+2x+22x24+=2x34 (9)2 (10)2W

4.2. Root Test and Condensation Test:
Theorem 1: (Cauchy's root test)

Let Y a,, be a series of penitive terms. Then Y a,, is convergent if lim a,ll/" < 1 and divergent
n—-oo

if lim al/n > 1.

n—-oco

Proof:
Case (i) Let lim aX/" =1 < 1
n—-oo

Choose € > 0 suchthatl + € < 1.
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Then there exists m € N such that a,lq/" <l+¢eforaln=>m.

Lta, <+t foralln = m.
Now, since [ + &€ < 1,2(I + &)™ is convergent.
(by example 2 0f 3.1)

=~ By comparison test Xa,, is convergent.

1/n
n

Case (ii) Let lim,a, =1> 1.

Choose € > 0 suchthatl — & > 1.

Then there exists m € N such that a/™ > | — & for all n > m.
sa, > (-t foralln > m.

Now, since I — & > 1,2(l — s)™ is divergent (by example 2 of 3.1).
=~ By comaprison test, Xa,, is divergent.

Note:

The following is a more general form of Cauchy's root test.

Let Y a,, be a series of positive terms. Then Za,, is convergent if lim sup ail/ " <1 and

1/n
n

divergent if imsup a,/ ™ > 1.

Theorem 2: (Cauchy's condensation text)

Leta, +a, +as+........ +a, + ... (1)be a series of positive terms and whose terms are
monotonic decreasing. Then this series converges or diverges according as the series
gag+g*az+ ... +g
converges or diverges where g is any positive integer > 1.
Proof:

Lets, =a; +a, + +a, and

ts =gag + g*as + ... + g"ag .
Thens? = (a; + az + - ... .. +a,) + (ag+1 + Agip + ot + a§)+

.............. Halii +aliy + -t al)

<ga;+(@*—glag+ ... +(g"—g" Daj"-

('since the terms of the series are monotonic decreasing).

=ga; +9(g — Dag+ g*(g—1as + ... + 9" (g — Dag™!
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=ga + (g —1)(ga, + g?a + ...
=ga, + (g — Dt,_1.

Sy < gag+ (g — Dy,

=~ If the series (2) converges, then (1) converges.
Now, si > ga, + (g? — g)az + +(g"—g" Va}

g—1
= ga, +T(g2a§ + vt gMagn)

g-1 -
=gay +7(tn —gag) = ay +7tn-

=~ If the series (2) diverges, then (1) diverges.

Problem 1:
1
Test the convergence of Tog
Solution:
1
Let tn = Gogmm
~Ma, = 1
n logn'
s~ limY/a, =0< 1.
' 1
=~ By Cauchy's root test ), Toa )" converges.
Problem 2:

1 -n
Test the convergence of }; (1 + ;)

Solution:

Leta, = (1 + %)_n

= (143)

s limy oV a, = i (refer problem 3 0of 1.7)

-n

<1

=~ By Cauchy's root test the series converges.

Problem 3:

Prove that the series ¥ e~V7x™ converges if 0 < x < 1 and diverges if x > 1.

Solution:

Leta, = e~Vnyn,
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S =g
wa)™ = ey,

s~ limay™ — x.

n--—

=~ By Cauchy's root test the given series converges if 0 < x < 1 and diverges if x > 1.

Problem 4:
n3+a
Test the convergence of 3. —=—.
Solution:
3+ 3
Leta, = ——and b, = -
a, (n*+a (2”)
“b, \2"+a)\n3
_(n’+a ( 2" )
\ n3 2"+ a
~(1+2) (#)
B n3/\1+ (a/2")
lim & =1,
n-oo bn

3
= By comparison test, the given series is convergent or divergent according as Y, Z—n is

convergent or divergent.

Also limn3/™ = 1.

~ lim ’Vb_n =21

n—-—oo 2

~ Zb,, is convergent.
~ Za,, is convergent.
Problem 5:

1

Test the convergence of ), g

Solution:

1
nlogn

Z 2" _Z 1 1 z 1
2nlog2" nlog2 log?2 n

By Cauchy’s condensation test, ), converges or diverges with the series.
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= =1
Now, the series Z% diverges.

=~ The given series diverges.

Problem 6:
. 1
Test the convergence of the series ), g

Solution:
The given series converges or diverges with the series

2" 1
2 2"(log 2™)P - Z (log2)Pnp
1 1
- (log2)? Z np

The series Z% converges if p > 1 and diverges if p < 1.

=~ The given series converges if p > 1 and diverges if p < 1.
Problem 7:

Test the convergence of the series = + = + iz + iz + 13 + 13 +
2 3 2 3 2 3

Solution:
1/n
1n (371%) If nis even
We have a,/ " = L \un
(W) Ifn is Odd
[ L ifni
— Ifniseven
1/n _ 4 \/§
an = 1 -
| —— Ifnis odd
k21/2(1+ﬁ)
1 1
Now, the sequence " vES converges to " asn —» —oo,

l
1

7 N

By Cauchy’s root test the given series is convergent.

and % are the only limit points of the given sequences lim sup aﬁ =1«

89

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



4.3. Integral Test:
Theorem 1:(Cauchy's integral test)

Let f be a non-negative monotonic decreasing integrable function defined on [1, o). Let

L, =/ 1“ f(x)dx. Then the series Zf (n) converges iff the sequence (I,,) converges. Further

the sum of the series lies between [ = lim I, and I + f(1).
n—->oo

Proof:

Let f(n) = a,. Since f is monotonic decreasing f(n — 1) = f(x) = f(n) wheren — 1 <

x <n.

“ Ap-1 = f(x) = an

n n n
f A,_1dx Zf f(x)dx ZJ a,dx
n-1 n—-1 n-1

Ap_q = f;_l fdx=a, ............ (1)

Replacing n by 2,3, ... ... ... ,n in (1) and adding we obtain
n

a;+a, +..ta,_ = f f(x)dx = a, +as + .. +a,
1

NSy, —an, =1, =5, —a; wheres, =a; +a, + - ...... +a,
cag=2s,— I, =a,

Now, since f is non-negative, f(n) = a,, = 0.
sa=2s,— 1, =>0.

Now, let s, — I, = A,,.

cap=A, =200 L ()

=~ (A,) is a bounded sequence.

Also Apyy —An =Spy1 —Sn— Iy + Iy
n+1
- | f@ax
n

n+1
S Gngr — j- Apyrdx
n
<0
“Apr S Ay
=~ A,, is a bounded monotonic decreasing sequence.
~ limA,, = lim(s, — I,,) exists.

. lim s, exists iff lim[,, existsand limA4,, =s—1 ........... 3)

n—-—oo
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where s is the sum of the seriesand I = lim

n
n—»—oo
= The series Y, f (n) converges iff the sequence (I,,) converges.
In this case from (2) a; = lim4,, > 0.

~a;=s—12=0 (by (3))
~l+a=s=1.
I+ f(1)=s>1.

Problem 1:

Show that lim (1 + % + g + +%— logn) exists and lies helwecn 0 a and 1. (This

i
limit is known as Euler's constant and denoted by v ).

Solution:

Consider the function j(x) = 1/x defined on [1, ). Clearly f(x) is non-negative and
monotonic decreasing.

I, = fln idx = logn.

Let f(n) =a, =1/n.

wSsy— I = 1+%+§+ ---....+%—logn.

Now by Cauchy's integral test s,, — I,, converges and its limit lies belween 0 and a;.
Buta, = f(1) =1

~ lim (1 Fige +=— logn) exists and lies between 0 and 1.
n—-oo 2 n
Problem 2:
. . . 1
Discuss the convergence of the series Y., pep— where x > 0.
Solution:
1
Leta, = nogm)a =>0,n=2.

Consider the function f(x) = x(lo—;x)a so that f(n) = a,.

Clearly f(x) is non-negative and monotoaic decreasing on [2, ).
Case (i) Let a # 1.

. "odx
"= L x(logx)«
1 1-a "
- [1_a(logx) L
_ (logn)'™®  (log2)'™*¢
l1—-«a l1—-«a

)
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=~ (I,,) converges if @ > 1 and diverges if a?f
Hence by Cauchy's integral test, the given series converges if « > 1 and
diverges if « < 1.

Case (ii) Leta = 1.

“ I, = [log(logx)]3

= [log(logn) —log(log2)] = o0 asn — oo.

=~ (I,,) diverges and bence the given series diverges.

Problem 3:

Using the integral test discuss the convergence of the series Yne ™"
Solution:
Leta, = ne="’.

Consider the function f(x) = xe " so that f(n) = a,. Clearly f(x) is non-negative and

monotonic decreasing on [1, o).

n
Also I, =f xe ™" dx.

1

1 2
— -1 _ ,—n
= (et — o).
~ I, o> -etasn - .

2

~ By Cauchy's integral test, the given series is convergent and its suml lics between %e‘l and
2ot
2
Exercises.
1. Show that the series Z% converges if p > 1 and diverges if p < 1 and in case of

. 1
convergence the sum lies between — and £

p-1

2. Discuss the convergence of the following series using Cauchy's integral test.

() 2P - (i) X7+
(ii) 25 mom—s (W I —
W) TP W) IP o
(vii) IF ==
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Unit vV

Series of Arbitrary terms: Alternative series — Absolute convergence — Tests for convergence
of series of arbitrary terms.

Chapter 5: Sections 5.1-5.3

5.Series of Arbitrary Terms:

So far we have been dealing with series of positive terms. We now consider series in which
the terms are not necessarily positive.

5.1 Alternating Series:

Definition. A series whose terms are alternatively positive and-negative is called an
alternating series.

Thus an altering series is of the form

Ay —ay+ a3 —ag+ - iveeerennnn. = 2(—=1)"1a, where a,, > 0 for all n.
For example

V1141 1, _ —1)+1 (L) i i

1 Sty =t 2 (-1 (n) is an alternating series.

Y2342 _54.. = —1yn+1 (LY i i

(i) 2 e 2 (-1 ( " ) is an alternating series.

We now prove a test for convergence of an alternating series.
Theorem 1: (Leibnitz's test)
Let (—1)"*1q, be an alternating series whose terms a,, satisfy the following conditions (i)
(a,) is a monotonic decreasing sequence.
(i) lim a,, = 0.
n-co
Then the given alternating series converges.
Proof:
Let (s, ) denote the sequence of partial sums of the given series.
Thens,, =a; —a, +a;—a; + +ay,_1 —asy,
Son+2 = Son t Qani1 — Aonyz
“ Sontz2 — Son = (Aans1 — Aany2) = 0 (DY (i)
“ San+2 = S2n-
= (s5,,) Is @ monotonic increasing sequence.
Also sy, = ay — (az — az) — (ay — as) — - ... =(@zp—2 — Azp-1) — Az < aq by (i).
= (s2,,) is bounded above.
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= (s2,) IS @ cOnvergent sequence

Let (s2,) = s.

NOW, Szn+1 = S2n + 2n41-

S limy - Sopgq = 1My 00 Son + 1My 0 Aon4g

=5+ 0 =s.(by(ii))

“ (Sane1) =S

Thus the subsequences (s,,) and (s,,,+1) converge to the same limits.
=~ (s,) = s (by sec 2.3 theorem 2).

= The given series converges.

Note:

In the above theorem if lim,,_, a,, = a # 0, then lim,,_,S,, = s and lim,_,, Sy,4+1 = S + a.

Hence the sequence (s,) cannot converge. Further (s,,) is , bounded sequence. Hence (s,, )

oscillates.
= The given series oscillates.
Problem 1:

Show that the series 1 — § + § — % + o converge.

Solution:

The given series is 2(—1)"*1a,, where a, = 1/n

Clearly a,, > a,4, for all n and hence (a,,) is monotonic decreasing.
Also lim,,_,, a, = lim,_, % =0.

=~ By Leibnitz's tesi the given series converges.

Problem 2:
B (_1)n+1
Show that the series £ converges .
log(n+1)
Solution:
1
Leta, = log(n+1)’

Clearly (a,) » 0 asn — oo.

1 1
logn log(n+1)

Also foralln > 2.

=~ By Leibnitz's test the given series converges.
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Problem 3:

Show that the series 2(— 1)“+1 - oscnlates

Solution:

n

Let a, = 3’11_—2

Clearly a,, > a,,, forall n.

. n 1
Also llmn_)oo Iz 3

=~ The given series oscillates.
Problem 4:
Show that the following series converges

S+ + A +2+3) (1 +2+3 4+

Solution:

2+ 1)

Clearly a,, > a, 4, for all n.

n

Also limn_)ooan = limn_)oo m

1
2n(1+ 1/n)2

~ By Leibnitz's test the given series converges.

= lim,,_,

Exercises:

WE—"F

(- 1)"(1+n )
1+n3

@ x-1 (+)

@1-3(+) +2(+5+) 3 d e
@1 (2 (ke d)
(5)x S
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(-1)"2log(n+1)
(n+1)~2

OM
(7) g EXn

2n—-1

8z
Ot

1+x  1+x2  1+x3

(10) £(~1)"sin ).

5.2. Absolute Convergence:

3

Definition:

A series Za,, is said to be absolutely convergert if the series |a,| is convergent. .

Examples.
1. The series Z s absolutely convergent, for, Y, |( =Y % which is convergent.
2. The series Z " is not absolutely convergent for, ) |(_;)n| = Z% is divergent.

However, the given series is convergent (by problem 1 of 5.1).
Note:
If Za,, is a convergert sories of positive temms them Za,, is absolutely convergent.
Theorem 1:
Any absolutely convergent series is convergent.
Proof:
Let 2a,, be absolutely convergent .
= X|a,| is convergent.
Lets, =a; +a,+ - ....+ayand t, = |aq| + |lay| + - .o . + |a,|
By hypothesis (I,,) is convergent and hence is a Cauchy sequence.
Hence given € > 0, there exists n,eN such that
|t, —t,| <eforallmm=n, ......... (1)

Now let m > n.

Then |s, — syl = |ape1 + Az + 5 e v e + |l
< lapsrl + lapszl + ool ag |
= |tn _tml

< ¢ for all n,m = ny( by (1)).
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=~ (s,,) is a Cauchy sequence in R and hence is convergent..
~ Za, Is a convergent series.

Note 1:

The converse of the above theorem is not true. For example, the series }; (—1)"% IS

convergent. However ), % is divergent so that the series is not absolutely convergent.

Note 2:

Since Z|a,| is a series of positive terms, the tests developed in chapter 4 for series of positive
terms can be used to test the absolute convergence of a given series.

Definition:

A series. Y. a,, is said to be conditionally convergent if it is convergent but not absolutely
convergent.

Example:
—-1\" . .
The series }; % is conditionally convergent.

Theorem 2:

In an absolutely convergent series, the series formed by its positive terms alone is convergent
and the series formed by its negative terms alone is convergent and conversely.

Proof:

Let ). a, be the given absolutely convergent series.

. ifa, >0
We define p,, = {g” lifa; <0 and
n —
. { 0Oifa, >0
In = —a, ifa, <0

(i,e) p,, is a positive term of the given series and g, is the modulus of a negative term

=~ Zp,, is the series formed with the positive terms of the given series and Zq,, is the series
formed with the moduli of the negative terms of the given series.

Clearly p,, < |a,| and q,, < |a,,| for all n.

Since the given series is absolutely convergent, |a,,| is a convergent series of positive terms.
Hence by comparison test Zp,, and Xq,, are convergent.

Conversely Zp,, and Zg,, converge to p and g respectively. We claim that }; a,, is absolutely
convergent.

We have |a,,| = p, + q,
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= Zlan| = Z(pn + qn)
= Lpn + 2qy
=p+q
=~ Za,, is absolutely convergent.
Theorem 3:
If Za,, is an absolutely convergent scries and (b,,) is a bounded sequence, then the series
Y. a,b, isan absolutely convergent series.
Proof:
Since (b,,) is a bounded sequence, there exists a real number k > 0
such that |b,,| < k for all n.
o agby| = lay byl < kla,| for all n.
Since ), a,, is absolutely convergent X|a,| is convergent.
=~ Zkl|a,| is convergent
= By comparison test X|a, b, | is convergent.
~ Za, b, is absolutely convergent.
Problem 1:

Test for convergence of the series ), (_T%n

Solution:

Case (i) Letp > 1.

Then ) |(_n%n| =) nip is convergent.

=~ The given series is absolutely convergent and hence convergent.
Case (iiyLet0<p < 1.

Then (niv) is a monotonic decreasing sequence converging to 0 .

~ By Leibnitz's test the given series converges.

absolute convergence
. . . 1 .
In this case the convergence is not absolute since }; = diverges

when 0 <p < 1.
Case (iii) Let p = 0. Then the series reducesto —1 + 1 — 1 + which oscillates finitely.

Case (iv) Let p < 0. Then the sequence (nip) is unbounded. Hence the given scrics oscillates

infinitely.
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Problem 2:

Show that the series Z(—1)" [,/ (n2+1) - n] is conditionality convergent.

Solution:
— 2 ey =
Leta, =y(n?+1) —n ToTioe

Clearly (a,,) is a monotonic decreasing sequence converging to 0.

=~ By Leibnitz's test the given series converges.

Now we prove that X |(—1)” (,/ n?2+1) - n)| is divergent.
1) _ — g =

|( 1) (,/(nz +1) n)| Uy = T

Let b, = 1/n.
. Eﬂ _ n _ 1
by J(n2+1)+n /(1+i2)+1.
n
lim & = -
n—oo by

. By comparison test ), a,, is divergent.
=~ The given series is not absolutely convergent.
=~ The given series is conditionally convergent.

series of arbitrary terms

Problem 3:
n-1
Show that the series ), (’:1_1)' converges absolutely for all values of x.
Solution:
xn—l
Leta, = ——
ap | N
An+1 | x|
= lim,e [—2-| = oo for all x # 0.
an+1
n-1
=~ By ratio test the series ). (’:1_1)' is convergent for all x # 0 and the convergence is trivial
forx = 0.

=~ The series converges absolutely for all x.
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Problem 4:

(- 1) sinna

Test the convergence of )
Solution:

We have

(=1)"sinna 1 . .
[(=snne) < L (since |sin 6] < 1).

=~ By comparison test the series is absolutely convergent.
Exercises.

1. Discuss the convergence of the following series.

_1\n
@I aer.

(b) 3 &0

log(n+1)

© 20" 5+ )

=D"(n+2)

(@) 5 D

(-1)"™cos na
(¢) g Chcosrne

0 - () + () -
Oh e

2. Show that in a conditionally convergent series the series formed by its positive terms

alone is divergent and the series formed by its negative terms

also is divergent.
5.3.Tests for Convergence of Series of Arbitrary Terms:
Some tests for establishing the convergence of series of arbitrary terms are given in this
section.
Theorem 1:
Let (a,) be a bounded sequence and (b,,) be a monotonic decreasing bounded sequence.
Then the series Za,, (b,, — b,;,) is absolutely convergent.
Proof:
Since (a,,) and (b,) are bounded sequences there exists a real number k > 0 such that
la,| < k and |b,,| < k for all n.

Let s,, denote the partial sum of the series X|a,,(b,, — b,4+1)|.
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n
s, = z |ay(by — byyy)l
r=1

n
Z la,|(b, — b,.,,) (since b, > b,.,, for all 7)
r=1

n
< "Z (by — bys1)
r—1

= k(b1 - bn+1)
< k(lbll + |bn+1|)
< k(k + k) = 2k>.

= (s,,) is a bounded sequence.

o la, (b, — b,41)| is convergent.

& an(b, — b,,,) is absolutely convergent.

Theorem 2: (Dirichlet's test)

Let ), a, be a series whose sequence of partial sums (s,) is bounded Let (b,,) be a
monotonic decreasing sequence converging to 0 . Then the series Xa,, b,, converges.
Proof:

Let t,, denote the partial sum of the series ), a,b,,.

n

Sty = z a, b,

r=1
n
=51b; + Z (s; — sy_i)b, (since s, — s,_1 = a,.)
r=2
=27ty Sp(by — byy1) +Suby oo (1)

Since (s,,) is bounded and (b,,) is a monotonic decreasing bounded n-1 sequence
n-1 s,(b, — b,,,) is a convergent sequence (by theorem 1)
Also since (s,,) is bounded and (b,,) - 0, (s,,b,) — O.
(by problem 4 of 1.6).
=~ From (1) it follows that (t,,) is convergent.
~ ), a,b, is convergent.
Note:
Leibnitz's test for alternating series proved in 5.1 is a particular case of Dirichlet's test. For,

consider the alternating series £(—1)"a,, where ( a,, ) is @ monotonic decreasing sequence
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converging to zero. The sequence of partial sumsof Z(—1)™ is obviously a bounded
sequence.

Hence by Dirichlet's test £(—1)"a,, converges.

Theorem 3: (Abel's test)

Let ), a, be aconvergent series. Let (b,,) be bounded monotonic sequence. Then ), a,b,, is
convergent

Proof:

Since (b,,) is a bounded monotonic sequence; (b,) — b (say)

b — b, if (b,,) is monotonic increasing

Letc, = {bn — b if (b,,) is monotonic decreasing

a,b — a,b,, if (b,) is monotonic increasing

ApCp == . . . :
nen {anbn — ayb if (b,,) is monotonic decreasing

a,b — a,c, if (b,)) is monotonic increasing
b a, + a,c, if (b,) is monotonic decreasing ’

a,b, = { .............. (1)

Clearly (c,) is a monotonic decreasing sequence converging to 0 .

Also since Y a,, is a convergent series its sequence of partial sums is bounded.
~ By Dirichlet's test }.a,c,, is convergent.

Also Ya,, is convergent.

~ Zba,, is convergent.

~ By(1),Ya,b, is convergent.

Problem 1:

Show that convergence of Y a,, implies the convergence of ), 0;—"

Solution:

Let Xa,, be convergen.

1)\ . .
The sequence (;) is a bounded monotonic sequence.

Hence by Abel's test ), 0;—” is convergent.
Problem 2:
Show that the series ¥ Sinnne converges for all values of 6 and ¥ Coine converges if 8 is not a

multipic of 2.

Solution:
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sin n@

Consider the series Y —.

Let a,, = sinnf and b,, = 1/n.

Clearly (b,,) is a monotonic decreasing sequence converging to 0 .

Now, s, =sinf + sin26 + --- ..... +sinnf
1 o1 . ) ) .0
= Ecoseci _251n Bsmz + - .....+2sin n@smz]
1 or 0 360 2n—1 2n+1
=§cosec§_(cos§—cos7>+ ------ +(cos( > )9—005 > 9)]
1 er 6 2n+1
=§cosec§_cos§—cos( > )0]
1 0 0 2n+1
os,| = S cosec cosE—cos< 5 >0|
1 0 0 2n+1
=3 cosecE [cosi + cos( > )9”
<l cosecg X 2= cosecg
2 2 2

)
asyl < |cosec;|.

= (s,,) is a bounded sequence when 6 is not a multiple of 27

sinné

~ By Dirichlet's test Y a, b, = > converges when @ is not a multiple of 2.

n

When 6 is a multiple of 2, the series Z@ reducesto 0 + 0 + 0 + which trivially
convergesto 0.

sinn

9
) nT converges for all values of 0 .

. . 0
Now, we consider the series ' %

S, = cos O + cos 20 + - ... ... + cosnb
1 0 [ . 2n+1 . 9]
= -cosec - [sin——8 — sin—|.
2 2 2 2
6
asyl < |cosec5|.
= (s,) is a bounded sequence when 0 is not a multiple of 2.

~ By Dirichlet's test 2% converges when 6 is not nultiple of 2.
When 0. is a multiple of 2m, the series reduces 1 + % + § + which diverges.

. 7] . .
= The series ¥ % converges except when 6 is a mullipl of 27.
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Problem 3:

Prove that Y, (%) is convergent.

Solution:

Let a,, = sinn and b,, = 1/logn.

Clearly (b,,) is a monotonic decreasing sequence converging to 0 .
Sp,=sin2+sin3 + - ... + sin(n + 1)

= %cosec% [cos G) — cos (?)] (as in problem 2)

1
o |s,| < cosec (E)

= (s,,) is a bounded sequence.

sinn

By Dirichlet's test Yo, ( ) converges.

logn

Problem 4:

Discuss the convergence of the series ), (1 + % + o+ l)

n

sinnf

n

Solution:

—(1 1, 1
Let b, = (n(1 +24+ ...+n)>
And a,, =sinnf

As in problem 1, the partial sum s,, of the series }sinn@ is bounded except when 6 is a

multiple of 2.
. 1. . . 1 1 1\ . .
Now since — is a monotonic decreasing sequence ~ (1 +otnt ;) is also a monotonic

decreasing sequence (refer problem 1 of 1.3)

Also by Cauchy’s first limit theorem

(%(1 +o +%)> - 0.

~ By Dirichlet's test, the given series converges except when 0 is a multiple of 2.
When 6 is a multiple of 27, the series reduces to 0 + 0 + ---.. which converges to zero.
=~ The givenseries converges for all values of 0 .

Exercises:

1. Show that the convergence of Za,, = the convergence of

NE o
(i) ¥ “=a,
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(iii) =n'/"a,,

W (1+2) a,

2. Show that the series }; (1 + % e, +%) COjan

converges except when is multiple of 2.
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